Translator Disclaimer
12 August 2005 Non-destructive identification of varnishes by UV fluorescence spectroscopy
Author Affiliations +
Qualitative UV-fluorescence of varnishes is commonly used to locate repaints on paintings or to specify the homogeneousness of a varnish layer. Photographers can now use flash UV-lamps coupled with a CCD camera to obtain colour images of the fluorescence of paintings, unveiling thus both interest and difficulty to interpret these colours. Starting from this point of view, UV-fluorescence spectra appear to be a potential technique to characterize the nature of varnishes and, if possible, their state of degradation. This identification will be non-invasive, without contact, obtained in real time and workable in situ, as the identification of pigments or dyes by reflectance spectrometry which is already done in our group. The last goal will be to realize both identifications with the same device. Emission fluorescence spectra are implemented with the Jobin-Yvon Fluorolog-3, providing an incident wavelength laying between 200 and 850 nm. The emission spectra are implemented with an optical fiber linked to a Jobin-Yvon spectrometer HR460 and a multi-channel CCD detector. In a first step, popular, fresh, raw resins used between the XVI th and the XIX th century, as mastic, dammar and sandarac, have been used to prepare varnishes films with different solvents. The fluorescence spectra of these films have been carried out at different excitation wavelengths to build databases. After having tested the coherence, the limits and the accuracy of the method, we suggest different applications of our method. A synthesis of the results will be presented to characterize each varnish by their fluorescence spectra.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mathieu Thoury, Mady Elias, Jean Marc Frigerio, and Carlos Barthou "Non-destructive identification of varnishes by UV fluorescence spectroscopy", Proc. SPIE 5857, Optical Methods for Arts and Archaeology, 58570J (12 August 2005);

Back to Top