You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 October 2005Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography
In the framework of Fluorescence-enhanced Diffuse Optical Tomography, a numerical approach (usually the Finite Element Method) is often required because of the complexity of the geometry of the diffusing systems studied. This approach is appropriate for handling problems modelled by elliptic coupled partial differential equations but is known to be time and memory consuming. The resolution of the adjoint problem considerably speeds up the treatment and allows a full 3D resolution. Nevertheless, because of the ill-posedness of the problem, the reconstruction scheme is sensitive to a priori knowledge on the parameters to be reconstructed. In the present work, a multiple step, self-regularized, reconstruction algorithm for the spatial distribution of the fluorescent regions is presented. The prior knowledge of the regions of interest is introduced via a segmentation. This one is performed on the results obtained with a first rough reconstruction. The results are then refined along iterations of the segmentation/reconstruction scheme. The technique is tested on experiments performed with a home made tomographer. A phantom study is presented.
The alert did not successfully save. Please try again later.
A. Da Silva, J. Boutet, A. Planat-Chretien, J.-M. Dinten, A. Gliere, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffusion optical tomography," Proc. SPIE 5859, Photon Migration and Diffuse-Light Imaging II, 58591L (7 October 2005); https://doi.org/10.1117/12.632884