You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 August 2005Dielectric coatings for customised tunable lithium niobate filters
Narrow bandpass Fabry-Perot etalons are widely used in solar astronomy for spectroscopic imaging. Solid electro-optically tunable filters made of thin, single-crystal lithium niobate are presented in this article. The pass-band is typically ~0.02nm at 550nm. We describe customized corrective and high-reflectivity optical coatings designed and manufactured to tailor the filter for the specific application. Spectral reflectance is calculated to satisfy wavelength requirements and to achieve optimal optical performance. The measured optical thickness of the lithium niobate wafer is an important factor in determining the optimal design of the etalon mirrors. Out-of-band rejection and bandwidth requirements are also taken into account, as well as the influence of the spectral properties of a high-order filter which blocks adjacent etalon orders. Design customization is particularly important in the case of tandem and double-pass etalons.
The alert did not successfully save. Please try again later.
Svetlana Dligatch, Roger P. Netterfield, David I. Farrant, "Dielectric coatings for customised tunable lithium niobate filters," Proc. SPIE 5870, Advances in Thin-Film Coatings for Optical Applications II, 58700L (19 August 2005); https://doi.org/10.1117/12.612876