30 August 2005 Critical review of stress coatings for membrane optics
Author Affiliations +
Abstract
The need and desire for large-scale reflectors is immediate and long lasting. Therefore engineers and designers are turning toward processes that produce reflectors much different than the conventional ground glass mirror. This paradigm shift encompasses many new and emerging technologies, including, but not limited to, pressure-augmented stress-coated membrane mirrors. Recent research has centered on determining the proper amount of stress (from the coating) to apply to a membrane substrate to produce a near-net shape that can be augmented with positive pressure to conclude in the smallest figure error. The bulge test has been applied to membrane samples of seven inch diameter, both uncoated and after coating, and central displacements used as data points when coupled with the finite element code ABAQUS to determine strain and stress values. These values are then correlated to the coating process to determine a 'coating prescription' by which that state of minimal figure error can be attained. Vibration testing in vacuum also shows promise as an effective method to determine the amount of stress present in the coated membrane. The shifts in natural frequencies of a coated membrane versus its uncoated self are unique and indicative of the stress increase by the addition of the coating. These natural frequencies are input into theoretical and ABAQUS models to determine strain and stress. This method is used to provide confidence with the bulge test results.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
S. Morrison, S. Morrison, A. Gavrin, A. Gavrin, R. Gonyer, R. Gonyer, K. Blizard, K. Blizard, J. Bradshaw, J. Bradshaw, L. Gunderson, L. Gunderson, C. Jenkins, C. Jenkins, "Critical review of stress coatings for membrane optics", Proc. SPIE 5894, Advanced Wavefront Control: Methods, Devices, and Applications III, 58941A (30 August 2005); doi: 10.1117/12.618390; https://doi.org/10.1117/12.618390
PROCEEDINGS
10 PAGES


SHARE
Back to Top