You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 August 2005Characterization of SERS substrates for chem/bio processing systems
Surface enhanced Raman spectroscopy (SERS) has promise as an optical sensor for the detection of chemical and biological agents, in particular when combined with front-end processing for sample preparation prior to analysis. In this paper, we report preliminary results from a SERS analysis of Bacillus cereus T strain (BcT), which was prepared for sensor analysis via a microfluidics-based sample processor. In the microfluidics hardware, low and high molecular weight analytes from a sonicated spore sample were separated via mass-dependent diffusion into two independent microchannels. SERS analysis of the sample outputs revealed a significant separation of the low molecular spore biomarker, dipicolinic acid, from the high molecular weight protein and nucleic acid background. In addition to the processing study, measurements were performed on gold core-shell nanospheres, which are considered a potential SERS substrate for the microfluidic system. Finally, field-induced aggregation of silver nanoparticles, an alternative to chemical aggregation, was shown to be an effective approach for the production of highly enhancing SERS substrates.
The alert did not successfully save. Please try again later.
Joseph A. Miragliotta, Jennifer L. Sample, Stergios J. Papadakis, "Characterization of SERS substrates for chem/bio processing systems," Proc. SPIE 5927, Plasmonics: Metallic Nanostructures and Their Optical Properties III, 59270P (26 August 2005); https://doi.org/10.1117/12.617871