5 October 2005 Gaussian beam diffraction in inhomogeneous media: solution in frame of complex geometrical optics
Author Affiliations +
Abstract
The method of paraxial complex geometrical optics is presented to describe Gaussian beam diffraction in arbitrary smoothly inhomogeneous media, including lens-like media. The method modifies and specifies the results by Babic' (1968), Kirpichnikova (1971), Cerveny, Popov, Psencik (1982), Cerveny (1983, 2001), Timofeev (1995) and Pereverzev (1996) as applied to the optical problems. The method of paraxial complex geometrical optics reduces the problem of Gaussian beam diffraction in inhomogeneous media to the solution of the system of the ordinary differential equations of first order, which can be readily calculated numerically by the Runge-Kutta method. Thereby the paraxial complex geometrical optics radically simplifies description of Gaussian beam diffraction in inhomogeneous media as compared to the numerical methods of wave optics. By the way of example the known analytical solution for Gaussianbeam diffraction both in a free space and in lens-like medium (Bornatici, Maj 2003) are presented. It is pointed out, that the method of paraxial complex geometrical optics turns out to be equivalent to the solutions of the abridged parabolic wave equation.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yu. A. Kravtsov, Yu. A. Kravtsov, P. Berczynski, P. Berczynski, } "Gaussian beam diffraction in inhomogeneous media: solution in frame of complex geometrical optics", Proc. SPIE 5949, Nonlinear Optics Applications, 59491F (5 October 2005); doi: 10.1117/12.622044; https://doi.org/10.1117/12.622044
PROCEEDINGS
12 PAGES


SHARE
RELATED CONTENT


Back to Top