You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 October 2005A canopy reflectance model based topographic normalisation approach for forested terrain
In most forestry remote sensing applications in steep terrain, simple photometric and empirical corrections are confounded as a result of variable stand and species structure with terrain and the anisotropic reflective properties of vegetated surfaces. To address these problems, we test two new topographic correction approaches based on Sun-Canopy-Sensor (SCS) geometry. SCS is more appropriate than strictly terrain-based corrections in forested areas since it preserves the geotropic nature of trees (vertical growth with respect to the geoid) regardless of terrain, view and illumination angles. The first SCS approach accounts for diffuse atmospheric irradiance based on the C-correction (SCS+C). Secondly, a new multiple forward mode (MFM) canopy reflectance model based correction (MFM-TOPO-COR) is introduced which normalizes topographically induced signal variance as a function of forest stand structure and sub-pixel scale components, while also maintaining proper SCS geometry. These two new techniques are compared to existing correction methods (cosine, c correction, Minnaert, statistical-empirical, SCS, and b correction) in a Rocky Mountain forest setting in western Canada. The ability of these eight correction methods are tested and compared for removing topographically induced variance and for improving the classification accuracy of a SPOT image over this sub-alpine and alpine forest area. The new MFM-TOPO-COR canopy reflectance model correction method is shown to provide the greatest improvement in classification accuracy within a species and stand density based class structure. The potential and limitations of this new approach are critically discussed.
The alert did not successfully save. Please try again later.
Scott Soenen, Derek R. Peddle, Craig A. Coburn, Ron J. Hall, "A canopy reflectance model based topographic normalization approach for forested terrain," Proc. SPIE 5983, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, 598301 (28 October 2005); https://doi.org/10.1117/12.627688