24 October 2005 Content-based audio retrieval: a comparative study of various features and similarity measures
Author Affiliations +
Proceedings Volume 6015, Multimedia Systems and Applications VIII; 60151H (2005) https://doi.org/10.1117/12.629147
Event: Optics East 2005, 2005, Boston, MA, United States
Audio retrieval is an important research topic in audio field. A good audio retrieval system is very helpful to facilitate users to find the target audio materials. In such a system, while audio features are fundamental in representing an audio clip, similarity measure is also an important fact affecting the performance of audio retrieval. In previous research works, there are many proposed audio features and used distance measures. However, there is not yet a good study about the effectiveness of different features and distance measures. Therefore, in this paper, we perform a comparative study on various audio features and various distance measures (similarity measures). The compared audio features include Mel-frequency cepstral coefficients (MFCC), Linear Predictive Coding Coefficients (LPC), sub-band energy distribution and some other temporal/spectral features, while the compared distances include Euclidean distance, Kullback-Leibler (K-L) divergence, Mahalanobis distance and Bhattacharyya distance. The study is expected to be helpful in the further design of audio retrieval system.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Pingying Wan, Pingying Wan, Lie Lu, Lie Lu, } "Content-based audio retrieval: a comparative study of various features and similarity measures", Proc. SPIE 6015, Multimedia Systems and Applications VIII, 60151H (24 October 2005); doi: 10.1117/12.629147; https://doi.org/10.1117/12.629147

Back to Top