You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 January 2006How to use noise to reduce complexity in quantization
Consider a quantization scheme which has the aim of quantizing a signal into N+1 discrete output states. The specification of such a scheme has two parts. Firstly, in the encoding stage, the specification of N unique threshold values is required. Secondly, the decoding stage requires specification of N+1 unique reproduction values. Thus, in general, 2N+1 unique values are required for a complete specification. We show in this paper how noise can be used to reduce the number of unique values required in the encoding stage. This is achieved by allowing the noise to effectively make all thresholds independent random variables, the end result being a stochastic quantization. This idea originates from a form of stochastic resonance known as suprathreshold stochastic resonance. Stochastic resonance occurs when noise in a system is essential for that system to provide its optimal output and can only occur in nonlinear systems--one prime example being neurons. The use of noise requires a tradeoff in performance, however, we show that even very low signal-to-noise ratios can provide a reasonable average performance for a substantial reduction in complexity, and that high signal-to-noise ratios can also provide a reduction in complexity for only a negligible degradation in performance.
The alert did not successfully save. Please try again later.
Mark D. McDonnell, Nigel G. Stocks, Charles E.M. Pearce, Derek Abbott, "How to use noise to reduce complexity in quantization," Proc. SPIE 6039, Complex Systems, 60390E (18 January 2006); https://doi.org/10.1117/12.638476