Translator Disclaimer
6 December 2005 Fire control system for mobile vehicles using fuzzy controllers
Author Affiliations +
Proceedings Volume 6052, Optomechatronic Systems Control; 60520A (2005)
Event: Optomechatronic Technologies 2005, 2005, Sapporo, Japan
Inertial stabilization of electro-optical sighting systems and weapon slaving control loops are essential constituents of modern fire control systems for mobile combat vehicles. These systems are used for surveillance, target tracking and engaging the targets under dynamic conditions. Firing accuracy of such systems largely depends on stabilization and weapon slaving accuracies. Accuracy requirements become stringent as the operating range increases. Several other issues such as bore sighting offsets, ballistic offsets and mounting error compensation etc. are also to be considered. Fuzzy knowledge based controller (FKBC) offers an alternative method to the conventional control synthesis methodologies using root locus, Bode plots or pole placement. Fuzzy control loops are particularly useful when the plant consists of substantial non-linearity due to actuator saturation, stiction, Coulomb friction, digitization etc. Since, the control surface obtained through this method is non-linear, generally it provides greater flexibility to designer to achieve better damping, lesser control energy even in presence of various constraints. This work presents the design of weapon slaving loop using a fuzzy controller. The weapon is slaved to a gimbaled electro-optical sight, which has a stabilized line of sight along two axes. The system under consideration is designed for naval platforms. A two-input (error and rate of change of error) and single output (incremental control) fuzzy controller has been designed to position the weapon at desired position. Implementation of controller has been done using digitized inputs. Simulations have been carried out to evaluate the performance of the integrated fire control system under the presence of various non-linearities, sensor inaccuracies and other exogenous inputs like host platform generated disturbances and measurement noise. Stringent requirements of disturbance attenuation, tracking and command following have been met.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J.A.R. Krishna Moorty, Rajeev Marathe, and Hari Babu Srivastava "Fire control system for mobile vehicles using fuzzy controllers", Proc. SPIE 6052, Optomechatronic Systems Control, 60520A (6 December 2005);

Back to Top