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During the last decade, a number of remarkable magnetic resonance imaging (MRI) techniques have been developed for 
measuring human brain activity and structure.  These MRI techniques have been accompanied by the development of 
signal processing, statistical and visualization methodologies. We review several examples of these methods, drawn 
mainly from work on the human visual pathways.  We provide examples of how two methods- functional MRI (fMRI) 
and diffusion tensor imaging (DTI) - are used.  First, we explain how fMRI enables us to identify and measure several 
distinct visual field maps and measure how these maps reorganize following disease or injury. Second we explain how 
DTI enables us to visualize neural structures within the brain’s wires (white matter) and measure the patterns of 
connectivity in individual brains. Throughout, we identify signal processing, statistical, and visualization topics in need 
of further methodological development.    
 
 

1. INTRODUCTION 
 
Advances in magnetic resonance imaging (MRI) technology make it possible to obtain a great deal of new information 
about human brain structure and function. Before the early 1990s, very little information could be obtained about the 
neural activity in the brain; most of that information was derived from electrical potentials measured at the scalp or 
positron emission tomography (PET) measurements with fairly coarse resolution and poor signal-to-noise. Magnetic 
resonance imaging was used principally to measure coarse brain structure, such as the size and shape of large structures.   
 
Then, in the early 90s Ogawa and colleagues discovered MRI methods to measure physiological responses correlated 
with neural activity (Ogawa et al., 1990).  The measurement of functional signals using MRI is called fMRI. Ogawa’s 
specific MR technique, called Blood Oxygen Level Dependent (BOLD) imaging, provides information about the 
activity in the human brain at a much finer spatial scale than any previous human brain measurement method.  The 
BOLD signals indirectly measure activity localized within the gray matter, where neural computations take place.  It is 
now common to measure activity at a spatial resolution of 3x3x3 mm, and some groups have reported good quality 
fMRI signals at sub-millimeter resolution. BOLD-fMRI is now used in scientific and clinical experimental work at 
hundreds of laboratories around the world. 
 
In the late 90s, several groups developed additional MR methods to analyze another important part of the brain:  the 
white matter tracts that form the long-range connections within the brain (Basser et al., 1994; Basser, 1995; Basser and 
Pierpaoli, 1996; Conturo et al., 1999; Mori et al., 1999; Basser et al., 2000).  These experimental measurements extend a 
conventional MRI technique (diffusion weighted imaging) that measures the rate at which water diffuses in a specific 
direction.  By combining diffusion measurements in many different directions, it is possible to estimate the paths 
followed by water as it diffuses within the white matter.  These “rivers” in the brain generally flow along the major fiber 
tracts within the white matter.   These measurement methods and computational methods, called diffusion tensor 
imaging (DTI) and fiber tractography (FT), reveal brain structures that were invisible using conventional structural 
imaging. 
 
All three of these MR measurements- structural MRI, BOLD fMRI and DTI-FT- can be combined in individual human 
subjects.  Because MR is non-invasive and does no harm to the subject, the measurements can also be made to the same 
subject over time.  This permits averaging to improve SNR, or measurements to reveal changes as the brain matures, 
learns a new skill or undergoes drug or behavioral therapy. Applications of these methods have taught us an enormous 
amount about the human brain. 
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In Section 2 we describe more about the BOLD signal, with particular attention to what it measures and how BOLD 
fMRI fits in with other types of brain measurements.  We then describe one application of these methods, namely how 
BOLD fMRI is used to identify important functional units within the visual pathways of individual human subjects, the 
visual field maps.  In Section 3 we describe the basic measurements and algorithms used in DTI-FT.  We then describe 
how these methods are used to identify the fiber tracts that connect the visual pathways in the two hemispheres of 
individual human brains.  In Section 4 we review the general principles of visual organization, and we discuss 
limitations of the methods that we believe can be lifted by better measurement and computational methods. 
 

2. FUNCTIONAL MRI: MAPS 
 
Neural signals. The cell bodies of neurons in neocortex form a thin (2-4 mm) sheet of tissue. The neuronal sheet 
contains many folds, allowing it to fit within the skull.  When a single hemisphere is flattened, this sheet is roughly the 
size of an 8.5x11 inch sheet of paper (Wandell et al., 2000; Sincich et al., 2003).  Classic MR imaging clearly reveals 
the shape of the brain and the MR signal intensity can be tuned to provide good contrast between the sheet of gray 
matter and the white matter fibers that form the core material of the brain (see Figure 1a).   
 
The gray matter neurons are massively interconnected (Braitenberg and Schüz, 1998). Each cubic millimeter of gray 
matter contains on the order of 50,000 cells, and on average each cell connects to 1000 others.  The number of 

 

 
Figure 1.  Visualizing structures in the human brain.  (a)  The neocortical gray matter forms a 
sheet surrounding the white matter. Three slices are shown and the gray matter and white matter 
are denoted. The location of left calcarine sulcus is denoted in the coronal view. (b) The gray/white 
matter boundary is rendered as a surface.  The shading indicates the curvature of the surface, with 
dark indicating sulcus and light gyrus. The 3D surface is smoothed to make permit viewing the 
depths of the sulci. (c) An zoomed image showing the calcarine vasculature (V1) (Duvernoy et al., 
1981).  

SPIE-IS&T/ Vol. 6057  605701-2



connections is so abundant that if one were to lay the thin neural processes connecting these cells out in a line, the 
process within a single cubic millimeter would extend 3-4 kilometers.  
 
Neurons communicate with one another by signals transmitted within a specialized structure, the synapse. Transmission 
across the very small distance within the synapse takes place via molecules called neurotransmitters.  These molecules 
are released by the pre-synaptic neuron and received by specialized receptors in the post-synaptic neuron. This 
transmitter initiates a chain of events in the post-synaptic cell, resulting in an analog signal mediated by the modulation 
of ion-selective channels in the post-synaptic cell.  When the analog signal in the post-synaptic neuron reaches a 
threshold level, the neuron responds by transmitting a brief, discrete electrical pulse, the action potential.  The neuron 
delivering the action potential becomes a pre-synaptic neuron to its outputs.  The action potential, carried along the 
axon, arrives at the pre-synaptic terminal.  There it induces transmission of neurotransmitter, beginning the cycle again.  
 
The conduction velocity of an action potential depends primarily on the diameter of the axon: larger axons are generally 
faster.  For very long connections (such as the 150 mm required to connect left and right occipital poles through the 
corpus callosum), even a large axon of 10 µm diameter requires about 25 ms to conduct an action potential along such a 
distance (Rushton, 1951; Tolhurst and Lewis, 1992).  To reduce these delays, long axons can be wrapped in a fatty 
myelin sheath.  A myelinated axon of the same diameter and length would conduct its signal in less than 3 ms. In fact, 
most long-range connections in the brain are myelinated, and it is the high lipid content of myelin that makes the white 
matter appear white.  For very short connections, such as those connecting cortical neighbors (<1mm), the benefits of 
myelin are negligible. Thus, the gray matter contains no myelinated axons. Further, because these short connections 
between cortical neighbors can be made via small-diameter, unmyelinated axons, many more connections can be packed 
into a given volume of tissue. Because of this, neighboring cortical regions can be much more densely interconnected 
than more distant cortical regions. 
 
It is widely believed that the relative sensitivity of each cell to its inputs, coupled with the specific pattern of local 
connections, combine to perform brain computations. Signals from multiple neurons may add and subtract at these 
synapses.  When the relative sensitivity includes a nonlinear input output relationship, say a logarithmic or exponential 
function, the neural computations effectively compute products and ratios as well.  Steep thresholds and threshold 
modulations can act as switches and gates.  While these general principles seem clear, there are very few cases in which 
a detailed understanding of a computational function has been analyzed and confirmed for its functional significance. 
 
Over the last forty years, the dominant technique for probing the system properties of neurons in the gray matter has 
been single-unit physiology.  In this method, neuroscientists insert a recording microelectrode and measure the transient 
action potentials that are carried along the axons.  The action potential is a very important stage in the process because it 
is an essential step when neurons communicate between one another. The action potential, however, is not decisive.  
While in some cases a single spike from one of the thousand inputs may cause the post-synaptic cell to fire an action 
potential, this is not common.  In many cases a post-synaptic response requires the cumulative input of multiple pre-
synaptic cells, within a brief time period, before the post-synaptic cell produces an action potential and delivers it to the 
next neurons in the chain. 
 
Because cortical neurons communicate by action potentials, and because these potentials can be measured in vivo, much 
of cortical neuroscience is devoted to theories about the information code by action potentials.  Molecular neuroscience 
has devoted a great deal of time on the molecular mechanisms within the synapse itself, because these transmissions can 
be influenced by pharmacological agents.  For example, the effectiveness of the synaptic transmission process can be 
modulated by a variety of therapeutic drugs.  There are certain parts of the nervous system, such as the retina, where 
inter-neuron communication is not mediated by spikes.  All of the interactions are mediated by analog signals.  Hence, 
retinal physiologists have learned much by studying the analog potentials within that structure. 
 
The BOLD signal. Neuronal signaling is based upon transient changes in the voltage potential across cell membranes, in 
particular at the pre- and post-synaptic sites. Neural signaling requires energy, and the principal energy consumption is 
the process of restoring the voltage potentials across the neuronal cell membranes. Significant metabolic energy is 
required for the ion specific channels to restore the charge balance following the signaling process (Attwell and 
Laughlin, 2001 ; Lennie, 2003 ; Huettel et al., 2004; Logothetis and Wandell, 2004 ).  The demand for energy causes a 
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vascular response that increases the arterial blood flow and volume to active regions. The blood supplies oxygen for a 
glycolytic process that provides the energy used to restore membrane potentials and support neural communication.  
 
The mesh of fine capillaries in the brain (Figure 1a) regulates blood flow on a fine spatial scale that allows sub-
millimeter localization of blood flow changes.  The increase in the local blood flow and volume, however, takes 4-6 
seconds to evolve. Mosso (1881) observed the increase in blood flow in the human brain. The phenomenon was studied 
in animal models (Roy and Sherrington, 1890) and a particularly interesting human case was described by Fulton 
(1928).   
 
The MR signal can measure changes in the blood oxygen level (Ogawa and Lee, 1990; Huettel et al., 2004; Logothetis 
and Wandell, 2004). Such Blood Oxygen Level Dependent (BOLD) imaging is an indirect measure of the local neural 
activity. Because the local oxygen concentration depends on the energy required to return neurons to their resting state, 
the BOLD signal does not measure a unique signaling mechanism, such as the number of action potentials or the 
amplitude of the synaptic potentials. The possibility of dissociation between the BOLD signal and action potentials has 
been demonstrated experimentally (Lauritzen, 2001).  Logothetis’ group simultaneously measured action potentials, 
local field potentials, and BOLD activity (Logothetis, 2002).  They found that local field potentials are better correlated 
with the BOLD signal than action potentials, though both electrical measures correlate with BOLD reasonably well. 
 
In summary, BOLD fMRI indirectly measures neural activity. The neural events detected by the BOLD signal are a 
combination of those measured by conventional neurophysiological measures.  The BOLD signal is not yoked to either 
action potentials or local field potentials, though it is highly correlated with both. The BOLD signal also depends on the 
circuitry that combines these signals (see Logothetis and Wandell (2004) for an explanation of the circuit dependence). 
We do not yet have a complete theoretical model of how the different mechanisms and neural circuitry combine to yield 
a BOLD response. But, even in the absence of such a model, it is possible to learn a great deal about the brain. The great 
advantage of the BOLD signal is that it measures the human brain non-invasively at higher spatial resolution than other 
methods.  A disadvantage of the BOLD signal is that it has low temporal resolution because the vascular response 
develops over time.  This combination of properties makes the fMRI BOLD signal well-suited to measuring certain 
types of neural responses but not others.  It is worth noting that the same criticism can be made of any measurement 
methodology. 
 
Visual field maps. The discovery and characterization of a set of more than a dozen visual field maps in neocortex of 
macaque and other mammalian species is one of the great advances in visual neuroscience during the last fifty years 
(Zeki, 1993; Wandell, 1995).  These maps are cortical regions whose neurons are organized so that visual stimuli nearby 
in the visual field are represented by the responses of neurons that are nearby in cortex. Such a spatial arrangement is 
probably functional- it allows a more dense connectivity between neurons that process neighboring visual field locations 
than those that process more distant locations. Visual field maps range in size, but they typically span several square 
centimeters of the cortical surface.  
 
The identification and analysis of functional maps within human visual cortex is one of the most successful applications 
of BOLD fMRI. Functional imaging is well-suited to measuring the functional brain units of this size.  Functional MRI 
has been used to identify more than ten distinct visual field maps in the human brain, and even more are likely to be 
identified in the future (Larsson and Heeger, 2005; Swisher et al., 2005). Several but not all of these maps have obvious 
counterparts in the monkey brain (Zeki, 1969; Essen and Zeki, 1978; Felleman and Essen, 1991).  
 
Primary visual cortex (V1) is the largest and best known visual field map.  V1 is the primary recipient zone of retinal 
signals communicated from the retina via the thalamus (lateral geniculate nucleus) to cortex. V1 is located at the 
posterior pole of the brain, mostly within the calcarine sulcus, in the occipital lobe.  When the V1 map is flattened is 
occupies a area that is roughly 4 x 8-cm, though the surface area of V1 can differ by a factor of 2.5 between different 
observers (Dougherty et al., 2003). The V1 map in each hemisphere receives input from retinal neurons with receptive 
fields in the contralateral visual field, so that left V1 represents the right visual field.  
 
The organization and location of the human visual field map in V1 was originally inferred from visual field losses in 
patients with lesions. In a classic paper, Horton and Hoyt (Horton and Hoyt, 1991b) summarize their observations as 
well as related work from the 19th and 20th centuries. FMRI methods for measuring human visual field maps, called 
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either traveling-wave or phase-encoded methods, are described in many publications (Engel et al., 1994; Sereno et al., 
1995 ; DeYoe et al., 1996; Engel et al., 1997; Wandell, 1999; Wandell et al., 2005).  The traveling-wave method 
measures the map by making two types of measurements. To measure the eccentricity component of the map, a set of 
annuli contrast patterns is presented in an orderly sequence from fovea to periphery. To measure the angular component, 
a set of wedge contrast patterns are rotated slowly around the visual field. The eccentricity and angular directions of the 
stimulus that most effectively drives each cortical location is estimated from the pattern of responses. 
 
The fMRI derived visual field maps, measured in healthy subjects, are in excellent agreement with the maps inferred 
from the neurological data in patients with lesions (Engel et al., 1997; Wandell, 1999). Both data confirm that when 
measuring from posterior to anterior in cortex, the visual field representation shifts from the fovea to the periphery 
(increasing eccentricity). Also, when measuring from the lingual gyrus through the depth of the calcarine sulcus to the 
cuneus, the visual field representation shifts from the upper vertical meridian through the horizontal meridian to the 
lower vertical meridian (angle). (See Figure 2.) 
 

 
Figure 2.  Human V1 visual field maps estimated using fMRI and lesion data agree 
quantitatively. (A) A visual field map in calcarine, estimated using fMRI, is shown (subject AAB).  
The black and blue curves are iso-eccentricity (2.5, 5.0, 10 and 20 deg) and meridian lines (LVM = 
lower vertical meridian, HM = horizontal meridian, and UVM = upper vertical meridian), respectively. 
The parieto-occipital sulcus (POS) and the splenium (Spl) are indicated. The image represents the 
surface 0.5 mm above the gray/white matter interface. The same map is shown after smoothing the 
surface to make the calcarine easier to see. Dark shading indicates a region within a sulcus and light 
indicates a region on a gyrus. (B) The V1 map estimated from neurological case studies. The upper 
image shows an artist’s rendering of the data on a human brain. The lower image shows a flattened 
version of calcarine cortex.  The black mark in the map denotes the blind spot From (Horton and 
Hoyt, 1991a). 
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The visual field maps serve as an important coordinate frame for identifying corresponding locations within the brain of 
different individuals.  By measuring the maps in an observer’s brain once, it is possible to describe subsequent 
measurements, say of stimulus responsivity, with respect to these maps.  These measurements can be compared with 
similar measurements in other subjects whose brains may differ in size and folding pattern. 
 
One important open question concerns the functional role of these maps for visual computations.  In a series of papers 
and books, Semir Zeki proposed that individual visual field maps are specialized to carry out discrete visual 
computations, such as those concerning motion or color (Zeki, 1993).  Evidence supporting this view can be found from 
single unit recordings in macaque; neurons in some maps have very different stimulus selectivity than neurons in other 
maps.  The classic example is direction-selective neurons.  While direction-selective neurons are present in V1 and 
other cortical maps, in MT the vast majority of neurons are direction-selective.  These measurements and many others 
suggest that MT computes visual features associated with stimulus motion. But there is no evidence to support specific 
functional specializations for most visual field maps.  Further, it is not known that MT is the only visual field map that 
contains a preponderance of direction-selective neurons.  Nearby maps (e.g., MST) also contain a high proportion of 
direction selective cells.  There is no reason to believe that neurons in the MT field map are uniquely involved in 
computing visual motion. 
 

 
Figure 3.  Visual field maps are grouped into clusters.  More than ten individual visual field maps 
are identified in human visual cortex. These maps form clusters that share a confluent fovea with 
semicircular eccentricity bands, minimizing the length of the synaptic connections required to compare 
signals originating at common eccentricities.   The posterior cluster, including the maps V1, V2, V3 
and hV4, is centered on the occipital pole.   Clusters were identified on the ventral occipital (VO) 
portion of the brain, containing at least two maps (Brewer et al., 2005). An additional cluster appears 
to be located on lateral occipital (LO) (Larsson et al., 2006).  This cluster extends towards motion-
selective cortex (hMT+) on the anterior-lateral portion of the occipital lobe. Additional maps 
comprising clusters with their own confluent foveal representations exist on the dorsal surface running 
along the intra-parietal sulcus (Silver et al., 2005; Swisher et al., 2005). Results are reviewed and the 
cluster hypothesis introduced in Wandell et al. (2005). 
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As an alternative, we porposed that clusters of maps may form the basic functional unit for visual computations 
(Wandell et al., 2005).  On this view, the collection of maps in VO may be specialized to interpret form, while the maps 
near hMT+ may be specialized for motion.   The maps themselves may function as integrated units to derive critical 
stimulus features and signal these properties to other portions of cortex.  This is a very speculative idea that requires a 
great deal of additional experimental work.  But it is useful to have an alternative hypothesis to the notion that 
functional specialization is uniquely associated with individual maps. (See Figure 3.) 
 
 

DIFFUSION TENSOR IMAGING: TRACTS  
 
Long-range connections form early (well before birth) and are likely to be programmed genetically, rather than by 
experience. The long-range connectivity establishes cortical modularity (e.g., see Sur and Leamey, 2001). For example, 
primary visual cortex forms in the calcarine sulcus because that is where the optic radiations terminate. If the genetic 
program for an individual could be altered to re-target all the connections to and from primary visual cortex to a 
different cortical region, then that region would become primary visual cortex. Thus, measuring the long-range 
connectivity of the brain is an essential step toward a complete understanding of brain function. 
 
The long-range connectivity is also crucial for understanding brain development. While existing connections can be 
pruned away or strengthened, new long-range connections do not form in the brain once it is myelinated (Horner and 
Gage, 2000). The exuberant connectivity present in very young brains (Bourgeois and Rakic, 1993) allows them to 
better tune their structure with experience and adapt to damage. But, as these connections are pruned away during 
development, they can never be recovered, thus limiting adult plasticity. Also, while the young brain is over-connected, 
it is not fully connected; thus, the genetically-determined connectivity imposes limits to plasticity at any age. Finally, 
the details of this genetically-programmed connectivity pattern are likely to be polymorphic and thus vary from person 
to person. The variability in this connectivity pattern could very well be the defining feature for many heritable 
psychological traits and disorders (e.g., Hannula-Jouppi et al., 2005). 

 
Figure 4. Estimated fiber bundles connecting the occipital lobes. In this example, fiber tracts are estimated 
from seed points in the occipital lobe of the left hemisphere (upper left inset) to find all fiber bundles that pass 
through the left occipital lobe (yellow fibers in the left image).  The subset of occipital lobe fibers that pass through 
the corpus callosum (shown in cyan) is shown in the right image (blue fibers).  The location of these fibers in the 
plane of the corpus callosum is shown in the upper right inset. Scale bars indicate 1 cm. From (Dougherty et al., 
2005), Figure 1. 
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Surprisingly, it is difficult to measure the 
organization and properties of the white matter 
tracts in the living human brain.  Conventional 
anatomical measurements show the white matter 
as a homogeneous object with very little 
structure. Hence, the development of magnetic 
resonance methods for identifying these tracts in 
the living brain has opened up new possibilities 
for understanding how brain development and 
these important brain structures co-vary with 
human behavior and health. 

The MR methods for discovering the white 
matter tracts form and properties are again 
indirect measures.  This time the MR methods 
take advantage of the relationship between 
diffusion and cellular structure. Magnetic 
resonance imaging (MRI) has long had pulse 
sequences available for estimating the mean 
distance of diffusion in a single direction. 
Diffusion weighted (DW) imaging is commonly 
used in clinical practice to identify ischemia. This 
imaging modality uses the motion of water 
molecules to probe the cellular and molecular 
structures at a resolution much finer than the 
image resolution. In current clinical practice, DW 
measurements are made in three directions and 
the results are summarized by three DW images 
(e.g., coronal, axial and sagittal). 
 
In the mid-90s mathematicians and 
neuroscientists developed powerful 
computational methods to integrate diffusion 
data acquired in more than three directions 
(Basser et al., 1994).  These methods, called 
Diffusion Tensor Imaging (DTI), use multiple 
(usually six or more) DW images.  The 
measurements are summarized using a 3-
dimensional Gaussian model of diffusion- a 
tensor (ellipsoid) that approximates how far the 
water molecules diffuse in all directions from a 
point. The diffusion tensor provides a much 
better summary of the cellular and molecular 
properties than the three separate DW images.  
 
 In the late-90s, further computational advances 
permitted scientists to use whole brain data sets 
of diffusion tensors to deduce basic organization 
of white matter fiber bundles. The myelin sheath 
that covers the long-range axons in the white 
matter impedes water diffusion. This causes 
water to diffuse more easily along the length of 
axon bundles and impedes diffusion orthogonal 
to the bundles. Thus, the diffusion measurements 

 
Figure 5.  Convergence of occipital-callosal fiber bundle 
densities estimated independently in left and right 
hemispheres. The data from 53 children were combined.  (A) 
The data from each child was translated and scaled into a 
common coordinate frame, aligned with the AC-PC axis. The 
graph compares the number of fiber bundles per square 
millimeter (per subject) from the left (horizontal axis) and right 
(vertical axis) at locations within a grid drawn in the corpus 
callosum.  (B) The images show the fiber bundle density 
estimates overlaid on a contour that represents the average 
splenium in AC-PC aligned coordinates. These data form the 
basis of the graph in panel (A). The two images show the spatial 
distribution of the fibers derived from the left (left panel) and 
right (right panel) occipital lobes. (C) The data from each child 
was translated in two dimensions so that the combined center-
of-mass of left and right occipital-callosal fiber bundles is at a 
common location.  This translation reduces the variance caused 
by errors in registering the brains. Grid lines are spaced at 5 
mm. From (Dougherty et al., 2005), Figure 3. 
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in the white matter provide information about the local orientation of these fiber bundles. Computational algorithms 
were developed to link tensors that share similar principal diffusion directions and thus estimate the fiber bundle 
pathways (see Mori and van Zijl, 2002 and Bammer et al., 2003 for reviews). The combination of DTI and fiber 
tracking (FT) produces estimates of the major fiber bundles in the brain of individual subjects. The shapes and 
properties of these fiber tracts, as well as their destinations in cortex, can be estimated.  
Our group has developed tools for visually exploring DTI-FT estimates (Akers et al., 2004; Sherbondy et al., 2005) and 
for evaluating the quality of the tract estimates (Dougherty et al., 2005). Figure 4 shows estimates of the fiber tracts that 
connect the two occipital lobes in an individual subject’s brain (an 11-year old child). By estimating these fiber tracts 
independently from the left and right occipital lobes in each subject, we can get a measure of the quality of the current 
DTI-FT methods (Figure 5). These independent fiber tract estimates originating from the two hemispheres converge 
onto a common region in the lower half of the splenium (the posterior corpus callosum). This observation validates the 
basic DTI-FT methodology. However, in any individual brain, we can find some fiber tract estimates that are clearly 
errors. The fiber tracts most prone to error are those that inter-digitate with other fiber tracts oriented in a different 
direction. This “crossing-fiber” problem is a serious limitation of the current DTI-FT methods. Various groups are 
developing methods to solve this problem by fitting more complex diffusion models (Tuch, 2004; Hosey et al., 2005; 
Parker and Alexander, 2005). A full solution to the problem will also likely involve innovations in the fiber-tracking 
algorithms that combine the diffusion measurements at each voxel (e.g., by introducing prior anatomical knowledge). 
 
Diffusion imaging can also be used to compare white matter structure between individual brains and between groups of 
individuals. Group differences in white matter structure have been reported in various disorders, including 
schizophrenia (Kubicki et al., 2005), multiple sclerosis (Bammer et al., 2000), epilepsy (Diehl et al., 2005), and reading 
disability (Klingberg et al., 2000; Beaulieu et al., 2005; Deutsch et al., 2005). The majority of group comparisons using 
DTI data involve a scalar value derived from the diffusion tensor, such as the mean diffusivity or the fractional 
anisotropy (the normalized variance of the eigenvalues of the tensor). This fact is partly due to the lack of statistical 
tools necessary to draw inferences from a tensor field. To address this limitation, we have developed statistical methods 
for comparing the principal diffusion direction between groups of brains (Schwartzman et al., 2005). We are also 
developing methods that allow statistical comparisons between the full tensors (Schwartzman et al., 2005). 
 
 

4. DISCUSSION 
 
The last fifteen years have produced an unprecedented growth in the ability to measure structure and function in the 
human brain. It is possible to coordinate FMRI and DTI measurements with behavior and different disease states.  
Because fMRI and DTI signals have good signal-to-noise in individual subjects, the methods are useful for diagnosis 
and monitoring therapeutic treatments.   
 
The MR measurements are complementary to many other sources of information about the brain.  While the MR 
technologies make fairly high spatial resolution measurements, they cannot follow rapid changes in brain state.  Rapid 
events can be detected using scalp recordings of electrical (EEG) and magnetic (MEG) fields, and there are attempts to 
coordinate these measurements (Dale et al., 2000; Babajani et al., 2005). When different measurement modalities 
depend on the same biological signals (e.g., post-synaptic potentials), taking advantage of spatial and temporal 
resolution is possible.  But, there is reason to be concerned about the commonality of the underlying mechanisms.  It is 
widely thought that EEG and MEG depend on the responses of the large pyramidal neurons that make up 85% of all 
cortical neurons (Braitenberg and Schüz, 1998).  The fMRI responses depend upon the total metabolic energy, however, 
and there is no data to suggest that these neurons consume 85% of the metabolic energy, and experimental conditions 
exist that dissociate the responses of large neurons and blood flow (Mathiesen et al., 1998). At this time we cannot be 
certain that fMRI and EEG or MEG measure the same neural signals, and this limits our ability to link data obtained 
from the these methods (Wandell and Wade, 2003).  Integration of the information from different measurement methods 
can only be secure after we develop a better understanding of the neural mechanisms that give rise to the different 
neuroimaging signals. 
 
Going forward, we think there are many opportunities for improving both data acquisition methods and software tools.  
Some of these opportunities are related to software: Databases for coding and sharing information are in a very 
primitive state.  Current software analysis tools used in the scientific labs are oriented towards group comparisons rather 
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than single-subject analysis, so that there are important needs to develop software technologies geared for single subject 
analyses. The next few years will see a substantial opportunity to combine information about genomics with 
neuroimaging data (Rueda et al., 2005). Advances in MR-spectroscopy and the ability to easily obtain genetic 
information will make it possible to build a much more complete view of the brain, its development and function. The 
engineering and medical infrastructure needed to integrate this information and build a coherent picture is an exciting 
and challenging task that awaits us. 
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