You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 February 2006Multi-class blind steganalysis for JPEG images
In this paper, we construct blind steganalyzers for JPEG images capable of assigning stego images to known steganographic programs. Each JPEG image is characterized using 23 calibrated features calculated from the luminance component of the JPEG file. Most of these features are calculated directly from the quantized DCT coefficients as their first order and higher-order statistics. The features for cover images and stego images embedded with three different relative message lengths are then used for supervised training. We use a support vector machine (SVM) with Gaussian kernel to construct a set of binary classifiers. The binary classifiers are then joined into a multi-class SVM using the Max-Win algorithm. We report results for six popular JPEG steganographic schemes (F5, OutGuess, Model based steganography, Model based steganography with deblocking, JP Hide and Seek, and Steghide). Although the main bulk of results is for single compressed stego images, we also report some preliminary results for double-compressed images created using F5 and OutGuess. This paper demonstrates that it is possible to reliably classify stego images to their embedding techniques. Moreover, this approach shows promising results for tackling the diffcult case of double compressed images.
The alert did not successfully save. Please try again later.
Tomáš Pevný, Jessica Fridrich, "Multi-class blind steganalysis for JPEG images," Proc. SPIE 6072, Security, Steganography, and Watermarking of Multimedia Contents VIII, 60720O (16 February 2006); https://doi.org/10.1117/12.640943