You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 February 2006Detecting digital image forgeries using sensor pattern noise
We present a new approach to detection of forgeries in digital images under the assumption that either the camera that took the image is available or other images taken by that camera are available. Our method is based on detecting the presence of the camera pattern noise, which is a unique stochastic characteristic of imaging sensors, in individual regions in the image. The forged region is determined as the one that lacks the pattern noise. The presence of the noise is established using correlation as in detection of spread spectrum watermarks. We proposed two approaches. In the first one, the user selects an area for integrity verification. The second method attempts to automatically determine the forged area without assuming any a priori knowledge. The methods are tested both on examples of real forgeries and on non-forged images. We also investigate how further image processing applied to the forged image, such as lossy compression or filtering, influences our ability to verify image integrity.
The alert did not successfully save. Please try again later.
Jan Lukáš, Jessica Fridrich, Miroslav Goljan, "Detecting digital image forgeries using sensor pattern noise," Proc. SPIE 6072, Security, Steganography, and Watermarking of Multimedia Contents VIII, 60720Y (16 February 2006); https://doi.org/10.1117/12.640109