You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 February 2006High repetition rate high power femtosecond fiber laser
We report passive harmonic mode locking of a high-power Yb-doped double-clad fiber laser operating in both the normal- and the anomalous-dispersion regimes with a fundamental repetition rate of 20.4 MHz. In the anomalous-dispersion regime (total cavity GVD of -0.1 ps2), 1-ps, 125-pJ pulses are emitted at a repetition rate of 408 MHz. When the total net dispersion is close to zero (about -0.004 ps2), 680 fs, 48 pJ pulses are emitted at a repetition rate higher than 2 GHz. The supermodes suppression is than about 25 dB. In the normal-dispersion regime (total cavity GVD of +0.047 ps2), 116-fs, 1.7-nJ pulses are emitted at a repetition rate of 102 MHz with a supermodes suppression of more than 60 dB. We also report a new regime of multiple pulsing emission observed with this fiber laser : the stable emission of two pairs of bound pulses exhibiting different time separations and uniformly separated in the same cavity round trip.
Keywords: Harmonic mode locking, multiple pulsing, bound states.
The alert did not successfully save. Please try again later.
B. Ortac, A. Hideur, M. Brunel, G. Martel, "High-repetition rate, high-power femtosecond fiber laser," Proc. SPIE 6102, Fiber Lasers III: Technology, Systems, and Applications, 610225 (23 February 2006); https://doi.org/10.1117/12.646192