5 January 2006 High and stable Q-factor in resonant MEMS with Getter film
Author Affiliations +
The need to reach high and stable values of the Q-factor is one of the most important issues of resonant MEMS in order to make high-performance sensors. The Q-factor is strongly influenced by the internal environment of the MEMS packaging, by total pressure and by gas composition. The most experienced and technically accepted way to keep the atmosphere stable in a hermetically sealed device is to use a getter material that is able to chemically absorb active gases under vacuum or in inert gas atmosphere for the lifetime of the devices. MEMS hermetically bonded devices such as gyroscopes, accelerometers, pressure and flow sensors, IR sensors, RF-MEMS and optical mirrors requires getter thin film solutions to work properly. Getter technical solution for wafer to wafer hermetically bonded MEMS systems is PaGeWafer, a silicon, glass or ceramic wafer ("cap wafer") with patterned getter film, few microns thick. In this paper, first the theoretical evaluation of Q-factor of a MEMS resonant structure in presence of a getter film is investigated and compared to the results of a Residual Gas Analysis of the same MEMS resonant structure and with the conventional measurement of Q-factor. Using getter thin film technology, total pressures down to 10-4 mbar with corresponding high and stable Q-factors have been achieved in MEMS resonant structures. We were therefore able to confirm that getter films can provide high Q-values, stability of sensor signal, performances stability during the lifetime, removal of dangerous gases like H2 and H2O in hermetically sealed MEMS resonant structures.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Conte, A. Conte, M. Moraja, M. Moraja, G. Longoni, G. Longoni, A. Fourrier, A. Fourrier, } "High and stable Q-factor in resonant MEMS with Getter film", Proc. SPIE 6111, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, 61110N (5 January 2006); doi: 10.1117/12.647710; https://doi.org/10.1117/12.647710


Back to Top