Translator Disclaimer
23 February 2006 Development of an all-DNA-surfactant electro-optic modulator
Author Affiliations +
Marine-based deoxyribonucleic acid (DNA), purified from waste products of the Japanese fishing industry, has recently become a new material of interest in photonics applications. The water soluble DNA is precipitated with a surfactant complex, cetyltrimethl-ammonium chloride (CTMA), to form a water insoluble complex, DNA-CTMA, for application as a nonlinear optical material. It is possible to fabricate an all-DNA-CTMA waveguide by crosslinking the DNA-CTMA. Crosslinking causes the material to become resistant to its initial solvents upon curing; this allows a core layer of crosslinked DNA-CTMA-chromophore to be spin coated directly on top of a cladding layer of crosslinked DNA-CTMA. The chromophore dye provides for the electro-optic effect to be induced through contact poling. The chromophore also raises the index of refraction of the core layer above that of the cladding needed for waveguiding. Progress on the development of this all-DNA-CTMA electro-optic modulator is presented.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Emily M. Heckman, Perry P. Yaney, James G. Grote, F. Kenneth Hopkins, and Melanie M. Tomczak "Development of an all-DNA-surfactant electro-optic modulator", Proc. SPIE 6117, Organic Photonic Materials and Devices VIII, 61170K (23 February 2006);


Poling and optical studies of DNA NLO waveguides
Proceedings of SPIE (August 17 2005)
A Novel Type Of Electrooptic Light Modulator
Proceedings of SPIE (June 01 1988)
Thermooptical Effect In Ti:LiNbO3 Planar Waveguide
Proceedings of SPIE (January 29 1990)
Overview of EO polymers and polymer modulator stability
Proceedings of SPIE (August 26 2005)
Self-assembled materials and devices that process light
Proceedings of SPIE (December 15 2004)

Back to Top