27 March 2006 Shape and vibration control of active laminated plates for RF and optical applications
Author Affiliations +
Abstract
Active shape and vibration control of large structures have long been desired for many practical applications. PVDF being one of the most suitable materials for these applications due to its strong piezoelectric properties and availability in thin sheets has been the focal point of most researchers in this area. Most of the research has been done to find an open loop solution, which would be able to shape the structure as per the desired requirements in an ideal atmosphere. Unmodeled dynamics and external disturbances prevent the open loop (no feedback) solution from achieving the desired shape. This research develops a dynamic model of a laminated plate consisting of two layers of PVDF film joined with a layer of epoxy. The orthotropic properties of PVDF have been modeled and the epoxy layer is considered to be isotropic. A general control model is developed, which would work for most boundary conditions and developed for a simply supported beam with patch actuators. The methodology is then extended for a simply supported laminated plate. This model could be used for real time dynamic disturbance rejection and shape and vibration control of the structure.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Amitesh Punhani, Amitesh Punhani, Gregory N. Washington, Gregory N. Washington, } "Shape and vibration control of active laminated plates for RF and optical applications", Proc. SPIE 6166, Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, 61661B (27 March 2006); doi: 10.1117/12.658788; https://doi.org/10.1117/12.658788
PROCEEDINGS
12 PAGES


SHARE
Back to Top