You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 April 2006In-plane strain capability of cellulose EAPap material
Electro-Active Paper (EAPap) has been interested in due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage, low power consumption and biodegradability. EAPap actuator has been made with cellulose material. Cellulose fibers are dissolved into a solution and extruded in a sheet form, and thin gold electrodes are made on it. This out-of-plane bending deformation is useful for achieving flapping wings, micro-insect robots, and smart wall papers. On the other hand, in-plane strains, such as extension and contraction of EAPap materials are also promising for artificial muscle applications since the Young's modulus of EAPap materials is large. Therefore, we intended to investigate the in-plane strain of EAPap materials in the presence of electric fields. The EAPap samples preparation and the in-plane strain measurement are explained. The test results are shown in terms of electric field, frequency and the orientation of the samples. The power consumption and the strain energy of EAPap samples are discussed. Although there are still unknown facts in EAPap materials, this in-plane strain may be useful for artificial muscle applications.
The alert did not successfully save. Please try again later.
Jaehwan Kim, Woochul Jung, Yukeun Kang, Sang-Dong Jang, "In-plane strain capability of cellulose EAPap material," Proc. SPIE 6170, Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics, 61701Z (6 April 2006); https://doi.org/10.1117/12.658114