You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2006High quantum efficiency C-QWIP FPA based IR cameras
Current generation QWIP detectors, although very cost effective, have relatively narrow spectral range and low quantum efficiencies. Tactical operation is generally limited to a single spectral band. These limitations arise from the design approach and restrict
applications to those that can tolerate these performance limitations.
Using recent device design improvements, a novel material, and special processing approaches, High Quantum Efficiency Dual Band C-QWIP detectors are currently being developed. These are expected to overcome traditional limitations in the QWIP design approach and deliver extremely high performance.
In the first phase of the program, single color LWIR and VLWIR C-QWIP FPAs in large (1024x1024) format will be demonstrated with targeted peak quantum efficiency of 35%, and correspondingly high BLIP operating temperatures. In the next phase of the program, the team will continue to improve QE towards 50% with conversion efficiency of 75%, and demonstrate dual band MW/LW FPAs. The detector gain will be optimized for operation in either low background or high background applications. These goals will
be accomplished using highly producible/low cost materials and processes. System considerations include ROIC well capacity, noise performance, as optics configuration and other concerns will be addressed. A robust design for high performance in a variety
of applications will be shown.
This work is being performed by the Army Research Laboratory (ARL) and L-3 Cincinnati Electronics (CE), with funding provided by the Missile Defense Agency.
The alert did not successfully save. Please try again later.
John Devitt, David P. Forrai, Darrel Endres, Richard Rawe, Bob Fischer, K. K. Choi, V. Swaminathan, "High quantum efficiency C-QWIP FPA based IR cameras," Proc. SPIE 6206, Infrared Technology and Applications XXXII, 62060C (17 May 2006); https://doi.org/10.1117/12.664714