Paper
18 May 2006 Adaptive focal plane array (AFPA) technologies for integrated infrared microsystems
P. Mitra, J. D. Beck, M. R. Skokan, J. E. Robinson, J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva, C. A. Musca, J. M. Dell, L. Faraone
Author Affiliations +
Abstract
Hyperspectral imaging in the infrared bands is traditionally performed using a broad spectral response focal plane array, integrated in a grating or a Fourier transform spectrometer. This paper describes an approach for miniaturizing a hyperspectral detection system on a chip by integrating a Micro-Electro-Mechanical-System (MEMS) based tunable Fabry Perot (FP) filter directly on a photodetector. A readout integrated circuit (ROIC) serves to both integrate the detector signal as well as to electrically tune the filter across the wavelength band. We report the first such demonstration of a tunable MEMS filter monolithically integrated on a HgCdTe detector. The filter structures, designed for operation in the 1.6-2.5 μm wavelength band, were fabricated directly on HgCdTe detectors, both in photoconducting and high density vertically integrated photodiode (HDVIP) detectors. The HDVIP detectors have an architecture that permits operation in the standard photodiode mode at low bias voltages (≤0.5V) or in the electron avalanche photodiode (EAPD) mode with gain at bias voltages of ~20V. In the APD mode gain values of 100 may be achieved at 20 V at 200 K. The FP filter consists of distributed Bragg mirrors formed of Ge-SiO-Ge, a sacrificial spacer layer within the cavity and a silicon nitride spacer membrane for support. Mirror stacks fabricated on silicon, identical to the structures that will form the optical cavity, have been characterized to determine the optimum filter characteristics. The measured full width at half maximum (FWHM) was 34 nm at the center wavelength of 1780 nm with an extinction ratio of 36.6. Fully integrated filters on HgCdTe photoconductors with a center wavelength of approximately 1950 nm give a FWHM of approximately 100 nm, and a peak responsivity of approximately 8×104 V/W. Initial results for the filters on HDVIP detectors exhibit FWHM of 140 nm.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
P. Mitra, J. D. Beck, M. R. Skokan, J. E. Robinson, J. Antoszewski, K. J. Winchester, A. J. Keating, T. Nguyen, K. K. M. B. D. Silva, C. A. Musca, J. M. Dell, and L. Faraone "Adaptive focal plane array (AFPA) technologies for integrated infrared microsystems", Proc. SPIE 6232, Intelligent Integrated Microsystems, 62320G (18 May 2006); https://doi.org/10.1117/12.673010
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Mercury cadmium telluride

Mirrors

Optical filters

Photoresistors

Electronic filtering

Silicon

RELATED CONTENT

Recent development of infrared tunable filter
Proceedings of SPIE (April 13 2015)
MEMS for tunable multi-spectral infrared sensor arrays
Proceedings of SPIE (September 29 2005)
LWIR/MWIR adaptive focal plane array
Proceedings of SPIE (December 06 2004)
SOFRADIR IR detectors today and tomorrow
Proceedings of SPIE (August 11 1998)

Back to Top