You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
We have developed a new nonlinear filter that is superior to particle filters in five ways: (1) it exploits smoothness; (2) it uses an exact solution of the Fokker-Planck equation in continuous time; (3) it uses an FFT to compute the effect of process noise at discrete times; (4) it uses the adjoint method to compute the optimal density of points in state space to represent the smooth conditional probability density, and (5) it uses Bayes' rule exactly by exploiting the exponential family of probability densities. In contrast to particle filters, which do not exploit smoothness, the new filter does not use importance sampling or Monte Carlo methods. The new non-particle filter should be superior to particle filters for a broad class of practical problems. In particular, the new filter should dramatically reduce the curse of dimensionality for many (but not all) important real world nonlinear filter problems.
The alert did not successfully save. Please try again later.
Fred Daum, "Non-particle filters," Proc. SPIE 6236, Signal and Data Processing of Small Targets 2006, 623614 (19 May 2006); https://doi.org/10.1117/12.659732