Translator Disclaimer
Paper
12 June 1986 Picture Archiving And Communications Systems (PACS) And Radiation Therapy Planning: Data And Workstation Requirements
Author Affiliations +
Proceedings Volume 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems; (1986) https://doi.org/10.1117/12.975456
Event: Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems (PACS IV) for Medical Applications, 1986, Newport Beach, CA, United States
Abstract
PACS literature to date has emphasized the needs of diagnostic imaging; however, the ability to acquire, manipulate, and display data derived from multiple imaging modalities is also vital in the practice of radiation oncology and radiation therapy planning (RTP). Radiographic or scintigraphic images for RTP must include specific spatial calibration data, as well as data relating image acquisition to anatomic localization within the patient. The digital nature of PACS images and displays allows the radiation oncologist to interactively assist in evaluating whether or not near-by structures are tumor-free. The radiation oncologist may also need to review nonradiographic diagnostic images (e.g., endoscopic images or pathology tissue specimens). Finally, it must be possible to take data such as isodose lines and superimpose them onto images relating the proposed therapy field to patient anatomy. Not only would this be useful for the radiation oncologist, but it would also provide information currently not easily available to the diagnostician and useful in subsequent diagnostic efforts. The three-dimensional (volumetric) data creation for RTP is not currently widespread because of the difficulties in converting images into a coherent, reliable and registered data set; this is the unique contribution of PACS. Software must be developed to permit creation of volumetric models based on data derived from both planar images and various tomographic modalities, including calibration and localizaton data for accurate image registration and scaling. This will permit positive definition of tumor volume by diagnosticians and the radiation oncologists as an initial portion of the therapy planning process. As a part of the underlying data structure for such systems, there must be some uniformity of image format between modalities and vendors; this has been adequately addressed by the Digital Imaging and Communications Interface Standard recently adopted by the American College of Radiology and the National Electrical Manufacturers' Association (ACR-NEMA). In addition, such standardization efforts must also incorporate the necessary calibration and coordinate data. This paper will examine some of the unique requirements for PACS (and PACS workstations)optimized for RTP. The assumption is made here that these are not independent, self-sufficient devices; rather, they are subsystems of a PACS network, capable of sharing certain resources.
© (1986) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
R. Judy Reavis and Jason S. Zielonka "Picture Archiving And Communications Systems (PACS) And Radiation Therapy Planning: Data And Workstation Requirements", Proc. SPIE 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems, (12 June 1986); https://doi.org/10.1117/12.975456
PROCEEDINGS
8 PAGES


SHARE
Advertisement
Advertisement
Back to Top