Translator Disclaimer
11 January 2007 A 3D framing camera with pulse laser and modulated receiver
Author Affiliations +
Proceedings Volume 6279, 27th International Congress on High-Speed Photography and Photonics; 62792K (2007)
Event: 27th International congress on High-Speed Photography and Photonics, 2006, Xi'an, China
It is convenient to apply three-dimensional (3D) detecting instruments to automatic drive, virtual reality modeling, terrain reconnaissance, etc. It is presented that a new high-speed camera which achieves one three-dimensions image by only one light pulse in this paper. It has a measurement range of one kilometer and a distance resolution of five meters. This camera is composed with a pulse laser and three receivers which are made up with a Micro Channel Plate (MCP) and a Charge Coupled Device (CCD) each. These parts are mature commercial productions that provide low cost and high reliable to the 3D camera. As soon as the pulse laser emits a light pulse, the three receivers are modulated with synchronistical control circuits. A 3D picture can be calculated by three different density images which are obtained by that. The one-light-pulse-one-picture mode gives a flexible way to work with a gate signal. A 3D camera working with high-speed gate signal can achieve high-speed photography easily. A mathematic model is established to describe measurement range, distance detection precision and space resolving of the camera. The best modulation functions of the receivers are given with consideration of white noise by Euler-Lagrange equation. Due to the best modulation function we give a scheme is follows: The first receiver is modulated by a const gain, the second one is modulated by a linearly increasing gain and the last one is modulated by a linear decreasing gain. This combination achieve both low noise and simple structure. Because of the simple structure, several fibers which we named amending fibers can be used to amend error of receiver modulation and synchronistical error. Analysis of the detection precisions of the camera and continuous wave detection systems are carried out both in time domain and frequency domain. The results indicate pulse laser can increase the detection range by suppressing background light greatly and decreasing imaging time. But it achieves lower precision if the background light is faintness. Simulation experiment results are presented in this paper. A 1.4 kilometers fiber was used in this experiment to simulate a 700 meters distant, a Laser Diode (LD) is employed to simulate the pulse laser. A high voltage modulation circuit was designed to modulate the gain of MCP to implement the modulation function. The experiment results with and without amending fibers indicated that the primary noises come from CCD and the high voltage modulation circuit. The amending fibers can weaken the circuit errors in some degree. Future improvement is described in the end of the paper also.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Xiuda Zhang, Huiming Yan, Yanbing Jiang, and Shenbao Yin "A 3D framing camera with pulse laser and modulated receiver", Proc. SPIE 6279, 27th International Congress on High-Speed Photography and Photonics, 62792K (11 January 2007);


SPADAS a high speed 3D single photon camera for...
Proceedings of SPIE (February 26 2015)
3D framing camera system based on sample cumulation method
Proceedings of SPIE (January 10 2007)
A new three dimension PLMR imaging system
Proceedings of SPIE (December 08 2005)
Three-dimensional camera
Proceedings of SPIE (May 29 2003)

Back to Top