You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 October 2006Measurement of beat length of PANDA polarization maintaining fibers by differential group delay method
In this paper, the DGD (Differential Group Delay) method for beat length measurement of PANDA polarization maintaining (PM) fibers is theoretically analyzed in detailed. And the analysis indicates, regarding the series of silica optical fibers, the error of beat length at different testing wavelength can be ensured less than 2% based on present fiber designs and germanium-doped concentration level. Presently the PMD400 (Polarization Mode Dispersion) analyzer is applied to measure the beat length of polarization maintaining fibers at Yangtze Optical Fiber and Cable Company. Lots of test results shows the DGD method is very reliable, convenient and nondestructive. In practical, the relative deviation of beat length at different wavelength can be kept under 1.5% below based on a number of experimental data. Therefore, the DGD of a PM fiber can be tested at a definite wavelength, such as 1550nm, and then the beat lengths at other operating wavelength can be got according to the relationship between beat length and operating wavelength.
The alert did not successfully save. Please try again later.
Wang Honghai, Tu Feng, Tong Weijun, Luo Jie, Liu Ying, "Measurement of beat length of PANDA polarization maintaining fibers by differential group delay method," Proc. SPIE 6351, Passive Components and Fiber-based Devices III, 63510K (3 October 2006); https://doi.org/10.1117/12.686990