You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 November 2006Application of a new time-correlated single photon counting instrument in a fiber-based quantum cryptography system
We present a fiber-based Quantum Cryptography (QC) system in which data is acquired by utilizing a new Time-Correlated Single Photon Counting (TCSPC) instrument. This device captures single photon events on two synchronized channels with picosecond resolution over virtually unlimited time spans and with extremely short dead-times (<95ns). The QC system operates at a wavelength of 1550nm and employs an interferometric approach in which quantum-level information is encoded in the relative phase shift between pairs of faint optical pulses generated by a strongly attenuated semiconductor laser. The QC channel and three additional conventional data channels are carried over a single transmission fiber using a coarse wavelength division-multiplexing (CWDM) scheme with a 20nm channel separation. We assess the impact of the various sources of errors in the system, such as imperfect interference visibility, detector dark counts and Raman scattering in the transmission fiber. Secure key distributions with mean photon numbers of 0.1 and 0.2 per pulse pair were demonstrated for transmission distances up to 25km and 38km respectively.
The alert did not successfully save. Please try again later.
Iris P. S. Choi, Harendra N. J. Fernando, Paul D. Townsend, Michael Wahl, "Application of a new time-correlated single photon counting instrument in a fiber-based quantum cryptography system," Proc. SPIE 6372, Advanced Photon Counting Techniques, 637210 (3 November 2006); https://doi.org/10.1117/12.686152