PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Electronic retinal prostheses represent a potentially effective approach for restoring some degree of sight in blind
patients with retinal degeneration. Functional restoration of sight would require hundreds to thousands of electrodes
effectively stimulating remaining neurons in the retina. We present a design of an optoelectronic retinal prosthetic
system having 3mm diameter retinal implant with pixel sizes down to 25 micrometers, which allows for natural eye
scanning for observing a large field of view, as well as spatial and temporal processing of the visual scene to optimize
the patient experience. Information from a head mounted video camera is processed in a portable computer and
delivered to the implanted photodiode array by projection from the LCD goggles using pulsed IR (810 nm) light. Each
photodiode converts pulsed light (0.5 ms in duration) into electric current with efficiency of 0.3 A/W using common bi-phasic
power line. Power is provided by the inductively-coupled RF link from the coil on the goggles into a miniature
power supply implanted between the sclera and the conjuctiva, and connected to subretinal implant with a thin 2-wire
trans-scleral cable.
3-dimensional structures in the subretinal prosthesis induce retinal migration and thus ensure close proximity between
stimulating electrodes and the target retinal neurons. Subretinal implantations of the 3-dimentional pillar and chamber
arrays in RCS rats with 2 and 6 week follow-up demonstrate achievement of intimate proximity between the stimulation
cites and the inner nuclear layer. In some instances formation of a fibrotic seal has been observed.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Alex Butterwick, Alex Vankov, Phil Huie, Karthik Vijayraghavan, Jim Loudin, Daniel Palanker, "Progress toward a high-resolution retinal prosthesis," Proc. SPIE 6426, Ophthalmic Technologies XVII, 64260R (5 March 2007); https://doi.org/10.1117/12.701787