Translator Disclaimer
13 February 2007 Investigational detection of pharmacological agents in the eye using photoacoustic spectroscopy
Author Affiliations +
This research reports progress in our earlier investigation of detecting specific drug diffusion into eye tissue using photoacoustic spectroscopy (PAS). A key improvement to the technique is using short pulse tunable laser source to stimulate the photoacoustic effect in tissue. An optical parametric oscillator (OPO) laser system was used as a pumping source to generate ultrasonic photoacoustic signals and employed to scan through different wavelengths with 0.1nm wavelength resolution to determine spectra of different drug solutions in an ocular phantom. The short pulse duration (5-10ns) of the OPO laser has significantly increased the photoacoustic efficiency conversion, and the ability to tune its output from 210nm to1800nm has provided a wide selection range that is useful for optimizing spectroscopic studies. PAS spectra of different solutions of molecules, such as Trypan Blue, Rose Bengal, Indocyanine Green (ICG), and Amphotericin B (AB), at concentrations as low as 1 &mgr;g/ml, were constructed and compared to their actual optical absorption spectra. Ultrasonic hydrophone and photothermal deflection technique (PhDT), a noncontact optical method, were both used to record the photoacoustic signals, and compared in terms of sensitivity and applicability to record signals from the ocular tissue-bearing phantom. The results show good agreement between the optical and photoacoustic spectra, which supports moving to an in vivo application of recording the PAS responses from the eye. Future work will be directed at adapting this method for in vivo measurements, as well as improve the data acquisition system for faster PAS signal analysis.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Saher M. Maswadi, Randolph D. Glickman, Norman Barslou, and Rowe W. Elliott "Investigational detection of pharmacological agents in the eye using photoacoustic spectroscopy", Proc. SPIE 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 643706 (13 February 2007);

Back to Top