You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
We review the current status of integrating optical quantum interference effects such as electromagnetically induced
transparency (EIT), slow light, and highly efficient nonlinear processes on a semiconductor chip. A necessary
prerequisite for combining effects such as slow light and related phenomena with the convenience of integrated optics is
the development of integrated alkali vapor cells. Here, we describe the development of integrated rubidium cells based
on hollow-core antiresonant reflecting optical waveguides (ARROWs). Hollow-core waveguides were fabricated on a
silicon platform using conventional microfabrication and filled with rubidium vapor using different methods. Rubidium
absorption through the waveguides was successfully observed which opens the way to integrated atomic and molecular
on a chip. The realization of quantum coherence effects requires additional surface treatment of the waveguide walls,
and the effects of the surface coating on the waveguide properties are presented.
The alert did not successfully save. Please try again later.
Holger Schmidt, Wenge Yang, Bin Wu, Dongliang Yin, Donald B. Conkey, John Hulbert, Aaron R. Hawkins, "Rubidium spectroscopy on a chip," Proc. SPIE 6482, Advanced Optical and Quantum Memories and Computing IV, 64820P (8 February 2007); https://doi.org/10.1117/12.716466