You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 February 2007Nonselective oxidation of GaAs-based III-V compound semiconductor heterostructures for in-plane semiconductor lasers
A nonselective wet thermal oxidation technique for AlGaAs-containing heterostructures has been shown to enable the
fabrication of a variety of novel high-efficiency, high-power GaAs-based in-plane laser devices. Applied in conjunction
with a deep anisotropic dry etch, nonselective oxidation yields a simple, self-aligned high-index-contrast (HIC) ridge
waveguide (RWG) structure. The native oxide grown directly on the waveguide ridge simultaneously provides excellent
electrical insulation, passivation of the etch-exposed bipolar active region, and a low refractive index cladding, leading
to numerous laser performance benefits. The resulting strong lateral optical confinement at the semiconductor/oxide
interface (with refractive index contrast &Dgr;n~1.7) enables half-racetrack ring resonator lasers with a record small 6 &mgr;m
bend radius. A nearly circularly-symmetric output beam is demonstrated on narrow w=1.4 &mgr;m aperture width straight
stripe-geometry lasers with single spatial and longitudinal mode total power output of ~180 mW at 228 mA (9x
threshold). With the complete structural elimination of lateral current spreading, the excellent overlap of the optical field
with the gain region provides high slope efficiency performance (ranging from >1.0 W/A at w=1.4 &mgr;m to 1.3 W/A for
w=150 &mgr;m broad area stripes) for 300 K cw operation of unbonded, p-side up 808 nm InAlGaAs graded-index separate
confinement heterostructure (GRINSCH) active region lasers. Using the direct thermal oxidation of a dilute nitride
GaAsP/InGaAsN MQW active region, 1.3 &mgr;m emission GaAs-based HIC RWG lasers exhibit a >2X threshold reduction
and kink-free operation relative to conventional low-confinement devices. Other recent progress on the application of
nonselective oxidation to GaAs-based semiconductor lasers will be reported.
Di Liang,Jusong Wang, andDouglas C. Hall
"Nonselective oxidation of GaAs-based III-V compound semiconductor heterostructures for in-plane semiconductor lasers", Proc. SPIE 6485, Novel In-Plane Semiconductor Lasers VI, 64850Q (8 February 2007); https://doi.org/10.1117/12.701648
The alert did not successfully save. Please try again later.
Di Liang, Jusong Wang, Douglas C. Hall, "Nonselective oxidation of GaAs-based III-V compound semiconductor heterostructures for in-plane semiconductor lasers," Proc. SPIE 6485, Novel In-Plane Semiconductor Lasers VI, 64850Q (8 February 2007); https://doi.org/10.1117/12.701648