20 February 2007 Camera motion and mobile imaging
Author Affiliations +
Due to the demanding size and cost constraints of camera phones, the mobile imaging industry needs to address several key challenges in order to achieve the quality of a digital still camera. Minimizing camera-motion introduced image blur is one of them. Film photographers have long used a rule-of-thumb that a hand held 35mm format film camera should have an exposure in seconds that is not longer than the inverse of the focal length in millimeters. Due to the lack of scientific studies on camera-motion, it is still an open question how to generalize this rule-of-thumb to digital still cameras as well as camera phones. In this paper, we first propose a generalized rule-of-thumb with the original rule-of-thumb as a special case when camera-motion can be approximated by a linear motion at 1.667 °/sec. We then use a gyroscope-based system to measure camera-motion patterns for two camera phones (one held with one hand and the other held in two hands) and one digital still camera. The results show that effective camera-motion function can be approximated very well by a linear function for exposure durations less than 100ms. While the effective camera-motion speed for camera phones (5.95 °/sec and 4.39 °/sec respectively) is significantly higher than that of digital still cameras (2.18 °/sec), it was found that holding a camera phone with two hands while taking pictures does reduce the amount of camera motion. It was also found that camera-motion not only varies significantly across subjects but also across captures for the same subject. Since camera phones have significantly higher motion and longer exposure durations than 35mm format film cameras and most digital still cameras, it is expected that many of the pictures taken by camera phones today will not meet the sharpness criteria used in 35mm film print. The mobile imaging industry is aggressively pursuing a smaller and smaller pixel size in order to meet the digital still camera's performance in terms of total pixels while retaining the small size needed for the mobile industry. This makes it increasingly more important to address the camera-motion challenge associated with smaller pixel size.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Feng Xiao, Feng Xiao, John Pincenti, John Pincenti, George John, George John, Kevin Johnson, Kevin Johnson, } "Camera motion and mobile imaging", Proc. SPIE 6502, Digital Photography III, 650204 (20 February 2007); doi: 10.1117/12.706974; https://doi.org/10.1117/12.706974

Back to Top