Translator Disclaimer
13 March 2007 Evaluation of scatter mitigation strategies for x-ray cone-beam CT: impact of scatter subtraction and anti-scatter grids on contrast-to-noise ratio
Author Affiliations +
Abstract
The large contribution of scatter to cone-beam computed tomography (CBCT) x-ray projections significantly degrades image quality, both through streaking and cupping artifacts and by loss of low contrast boundary detectability. The goal of this investigation is to compare the efficacy of three widely used scatter mitigation methods: subtractive scatter correction (SSC); anti-scatter grids (ASG); and beam modulating with bowtie filters; for improving signal-to-noise ratio (SNR), contrast, contrast-to-noise ratio (CNR) and cupping artifacts. A simple analytic model was developed to predict scatter-to-primary ratio (SPR) and CNR as a function of cylindrical phantom thickness. In addition, CBCT x-ray projections of a CatPhan QA phantom were measured, using a Varian CBCT imaging system, and computed, using an inhouse Monte Carlo photon-transport code to more realistically evaluate the impact of scatter mitigation techniques. Images formed with uncorrected sinograms acquired without ASGs and bow-tie filter show pronounced cupping artifacts and loss of contrast. Subtraction of measured scatter profiles restores image uniformity and CT number accuracy, but does not improve CNR, since the improvement in contrast almost exactly offset by the increase in relative x-ray noise. ASGs were found to modestly improve CNR (up to 20%, depending ASG primary transmission and selectivity) only in body scans, while they can reduce CNR for head phantoms where SPR is low.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dimitrios Lazos, Giovanni Lasio, Joshua D. Evans, and Jeffrey F. Williamson "Evaluation of scatter mitigation strategies for x-ray cone-beam CT: impact of scatter subtraction and anti-scatter grids on contrast-to-noise ratio", Proc. SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 65101V (13 March 2007); https://doi.org/10.1117/12.713610
PROCEEDINGS
10 PAGES


SHARE
Advertisement
Advertisement
RELATED CONTENT


Back to Top