Translator Disclaimer
15 March 2007 A novel cone beam breast CT scanner: system evaluation
Author Affiliations +
The purpose of the study is to characterize the imaging performance of the recently built novel cone beam breast CT (CBBCT) scanner. This CBBCT scanner system has one x-ray source and one flat panel detector (Varian's PaxScan 4030CB) mounted on a rotating assembly. A patient table is mounted above the rotating tube/detector assembly. The table has a hole through it that allows a woman's breast to hang pendant in the imaging volume at the rotation axis. The tube/detector assembly rotates around the rotation axis and acquires multiple 2D projection images of the uncompressed breast located at the rotation axis in 10 seconds. Slip ring technology allows continuous rotation of the x-ray tube/detector assembly concentric to the opening in the table to achieve multiple circle scans. Also, it has a controlled vertical motion during the rotation to perform a spiral scan over 20 cm of travel. The continuous 360° rotation is designed to have speeds up to 1 rev/sec. This system was validated through a series of breast-imaging phantom studies and and patient studies. The results show that the image quality of the CBBCT scanner is excellent and all phantom masses (tissue-equivalent carcinomas) and calcifications as well as human subjects' masses, calcifications and abnormalities can be detected faithfully using the CBBCT technique with a glandular dose level less than or equal to that of a single two-view mammography exam. The results indicate that the CBBCT imaging system has much better detectability of small breast tumors compared to the conventional mammography system.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ruola Ning, David Conover, Yong Yu, Yan Zhang, Weixing Cai, Ricardo Betancourt-Benitez, and Xianghua Lu "A novel cone beam breast CT scanner: system evaluation", Proc. SPIE 6510, Medical Imaging 2007: Physics of Medical Imaging, 651030 (15 March 2007);

Back to Top