You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 March 2007Imaging from multiply scattered waves
We consider the problem of
imaging in a region where ultrasonic waves are multiply scattered.
A transducer emits ultrasonic pulses in tissue where they scatter
from a heterogeneity (e.g. a tumor) in the region of interest
(ROI). The reflected signals are recorded and used to produce an
image of tissue. Many of the conventional imaging methods assume
the wave has scattered just once (Born-approximation) from the
heterogeneity before returning to the sensor to be recorded. In
reality, waves can scatter several times before returning to the
detector. The purpose of this paper is to show how this
restriction (the Born approximation or weak, single-scattering
approximation) can be partially removed by incorporating a-priori
known environmental scatterers, such as a cavity wall or bones
into the background velocity model in the context of acoustic
medical imaging. We also show how the partial removal of the Born
approximation assumption leads to an enhanced angular resolution
of heterogeneities that are present. We will illustrate our method
using a locally planar scatterer, which is one of the simplest
possible environments for the scatterer.
The alert did not successfully save. Please try again later.
Romina Gaburro, Clifford J. Nolan, Thomas Dowling, Margaret Cheney, "Imaging from multiply scattered waves," Proc. SPIE 6513, Medical Imaging 2007: Ultrasonic Imaging and Signal Processing, 651304 (12 March 2007); https://doi.org/10.1117/12.712569