21 March 2007 Content-based image retrieval from a database of fracture images
Author Affiliations +
Abstract
This article describes the use of a medical image retrieval system on a database of 16'000 fractures, selected from surgical routine over several years. Image retrieval has been a very active domain of research for several years. It was frequently proposed for the medical domain, but only few running systems were ever tested in clinical routine. For the planning of surgical interventions after fractures, x-ray images play an important role. The fractures are classified according to exact fracture location, plus whether and to which degree the fracture is damaging articulations to see how complicated a reparation will be. Several classification systems for fractures exist and the classification plus the experience of the surgeon lead in the end to the choice of surgical technique (screw, metal plate, ...). This choice is strongly influenced by the experience and knowledge of the surgeons with respect to a certain technique. Goal of this article is to describe a prototype that supplies similar cases to an example to help treatment planning and find the most appropriate technique for a surgical intervention. Our database contains over 16'000 fracture images before and after a surgical intervention. We use an image retrieval system (GNU Image Finding Tool, GIFT) to find cases/images similar to an example case currently under observation. Problems encountered are varying illumination of images as well as strong anatomic differences between patients. Regions of interest are usually small and the retrieval system needs to focus on this region. Results show that GIFT is capable of supplying similar cases, particularly when using relevance feedback, on such a large database. Usual image retrieval is based on a single image as search target but for this application we have to select images by case as similar cases need to be found and not images. A few false positive cases often remain in the results but they can be sorted out quickly by the surgeons. Image retrieval can well be used for the planning of operations by supplying similar cases. A variety of challenges has been identified and partly solved (varying luminosity, small region of interested, case-based instead of image-based). This article mainly presents a case study to identify potential benefits and problems. Several steps for improving the system have been identified as well and will be described at the end of the paper.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Henning Müller, Henning Müller, Phuong Anh Do Hoang, Phuong Anh Do Hoang, Adrien Depeursinge, Adrien Depeursinge, Pierre Hoffmeyer, Pierre Hoffmeyer, Richard Stern, Richard Stern, Christian Lovis, Christian Lovis, Antoine Geissbuhler, Antoine Geissbuhler, } "Content-based image retrieval from a database of fracture images", Proc. SPIE 6516, Medical Imaging 2007: PACS and Imaging Informatics, 65160H (21 March 2007); doi: 10.1117/12.709516; https://doi.org/10.1117/12.709516
PROCEEDINGS
11 PAGES


SHARE
RELATED CONTENT

CAMEL: concept annotated image libraries
Proceedings of SPIE (December 31 2000)
Mobile medical image retrieval
Proceedings of SPIE (March 24 2011)
New perspective on visual information retrieval
Proceedings of SPIE (December 17 2003)
Object-oriented image processing in multimedia systems
Proceedings of SPIE (February 15 1996)

Back to Top