Passive Millimeter-Wave Imaging Technology X

Roger Appleby
David A. Wikner
Editors

11 April 2007
Orlando, Florida, USA

Sponsored and Published by
SPIE—The International Society for Optical Engineering
Contents

vii Conference Committee

SYSTEMS

654802 New steps for passive millimeter imaging [6548-01]
A. Pergande, Lockheed Martin (USA)

654803 Millimeter-wave propagation through a controlled dust environment [6548-02]
D. Wikner, Army Research Lab. (USA)

654804 A 190GHz active millimeter-wave imager [6548-03]
M. L. Brothers, G. P. Timms, J. D. Bunton, J. W. Archer, J. Y. Tello, G. C. Rosolen, Y. Li,
A. D. Hellicar, Commonwealth Scientific and Industrial Research Organisation (Australia)

654805 Influence of complicated background noise on passive ground-based radiometer with low elevation angle [6548-04]
L. Wu, Y. Liu, Y. Zhu, Huazhong Univ. of Science and Technology (China)

SECURITY SCANNING

654806 High-resolution passive millimeter-wave security screening using few amplifiers [6548-05]
C. A. Martin, J. A. Lovberg, W. H. Dean, E. Ibrahim, Trex Enterprises Corp. (USA)

654807 Spectral decomposition of ultra-wide-band terahertz imagery [6548-07]
E. N. Grossman, National Institute of Standards and Technology (USA); C. R. Dietlein,
J. Chisum, National Institute of Standards and Technology (USA) and Univ. of Colorado at Boulder (USA);
A. Luukanen, Millimetre-wave Lab. of Finland (Finland); J. E. Bjarnasson, E. R. Brown, Univ. of California, Santa Barbara (USA)

Pagination: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon they are published online, and connects the same identifier to all online, print, and electronic versions of the publication.

SPIE uses a six-digit CID article numbering system in which:
* The first four digits correspond to the SPIE volume number.
* The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
Passive Euro-American terahertz camera (PEAT-CAM): passive indoor THz imaging at video rates for security applications [6548-08]
A. Luukanen, MilliLab (Finland); L. Grönberg, P. Helistö, J. S. Penttilä, H. Seppä, H. Sipola, VTT Technical Research Ctr. of Finland (Finland); C. R. Dietlein, National Institute of Standards and Technology (USA) and Univ. of Colorado at Boulder (USA); E. N. Grossman, National Institute of Standards and Technology (USA)

Speckle in active millimeter-wave and terahertz imaging and spectroscopy [6548-09]

ELECTRONIC BEAM FORMING

Sparse aperture millimeter-wave imaging using optical detection and correlation techniques [6548-11]
C. A. Schuetz, R. D. Martin, I. Biswas, Univ. of Delaware (USA); M. S. Mirotznik, Catholic Univ. of America (USA); S. Shi, G. J. Schneider, J. Murakowski, D. W. Prather, Univ. of Delaware (USA)

Passive millimeter-wave camera with interferometric processing [6548-12]
H. Nohmi, NEC Corp. (Japan); S. Ohnishi, National Maritime Research Institute (Japan); O. Kujubu, NEC Corp. (Japan)

Passive mm-wave imaging using two scanning fan-beam antennas [6548-14]
Y. Li, G. Timms, J. Archer, G. Rosolen, J. Tello, M. Brothers, A. Hellicar, Y. J. Guo, Commonwealth Scientific and Industrial Research Organization (Australia)

ENABLING TECHNOLOGY

Unamplified direct detection W-band imaging array [6548-15]

The development of affordable front-end hardware for mm-wave imaging using multilayer softboard technology [6548-16]
P. D. Munday, J. Powell, D. Bannister, QinetiQ (United Kingdom); P. J. Rice, MMIC Solutions (United Kingdom)

Performance of 94GHz receivers for passive imaging [6548-17]
R. G. Humphreys, S. M. Taylor, P. A. Manning, P. D. Munday, J. Powell, QinetiQ (United Kingdom)

LiNbO3 optical modulator for MMW sensing and imaging [6548-18]
C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, D. W. Prather, Univ. of Delaware (USA)

Direct detection antenna-coupled mmW sensors for the detection of explosive vapors [6548-19]
M. Gritz, R. Hernandez, E. Gordon, A. Larussi, Raytheon Co. (USA); G. Zummo, G. Boreman, CREOL, School of Optics, Univ. of Central Florida (USA); L. Chen, Raytheon Co. (USA)
FPGA acceleration of superresolution algorithms for embedded processing in millimeter-wave sensors [6548-20]
F. E. Ortiz, E. J. Kelmelis, J. P. Durbano, EM Photonics, Inc. (USA); D. W. Prather, Univ. of Delaware (USA)

Determination of dielectric material properties using passive MMW measurements for security applications [6548-21]
S. Dill, M. Peichl, H. Suess, DLR, Microwaves and Radar Institute (Germany)

Broadband THz aqueous blackbody calibration source [6548-22]
C. Dietlein, Univ. of Colorado at Boulder (USA) and National Institute of Standards and Technology (USA); Z. Popović, Univ. of Colorado at Boulder (USA); E. Grossman, National Institute of Standards and Technology (USA)

Author Index
Conference Committee

Symposium Chair
 John C. Carrano, Luminex Corporation (USA)

Symposium Cochair
 Larry B. Stotts, Defense Advanced Research Projects Agency (USA)

Program Track Chair
 Roger Appleby, QinetiQ Ltd. (United Kingdom)

Conference Chairs
 Roger Appleby, QinetiQ Ltd. (United Kingdom)
 David A. Wikner, Army Research Laboratory (USA)