You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 May 2007Finite temperature quantum entanglement
Some of our previous research showed some interesting results regarding the effect of non-zero temperature on a
specified quantum computation. For example, our analysis revealed that more Grover iterations are required to amplify
the amplitude of the solution in a quantum search problem when the system is found at some finite temperature. We want
to further study the effects of temperature on quantum entanglement using a finite temperature field theoretical
description. Such a framework could prove to be useful for the understanding of computational dynamics inside a
quantum computer. Other issues that we will address in our discussion include analytical descriptions of the effects of
the temperature in the Von Newman entropy and others as a measure of entanglement.
The alert did not successfully save. Please try again later.
Debabrata Ghoshal, Richard Gomez, Marco Lanzagorta, Jeffrey Uhlmann, "Finite temperature quantum entanglement," Proc. SPIE 6573, Quantum Information and Computation V, 65730B (10 May 2007); https://doi.org/10.1117/12.720348