You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 September 2007Optical near-field patterning of photopolymer
Micro and nano-patterning of photopolymer materials was successfully carried out by using near-field irradiation
configuration. In particular, Evanescent Waves created by total internal reflection were used to induce the
photocrosslinking of an acrylate-based photopolymer sensitive at 514 nm. We demonstrate here that the thickness of the
polymer layer can be tuned from few tens of nm to several microns by controlling the irradiation conditions. The sample
was characterized by profilometry, Atomic Force Microscopy and spectroscopy.
In addition, relief gratings with adjustable fringe spacing were recorded by interferometric method. Effect of photonic
parameters on the gratings geometry is discussed. By changing the irradiation conditions, it is possible to easily obtain
patterns with different geometries, which emphasizes the high versatility of the process.
This study presents high fundamental interest in the frame of nanofabrication since it provides important information on
the effects of confinement at a nanoscale of the photopolymerization reaction. Such data are of primary importance in the
field of nanolithography since the effect of parameters such as dye content, oxygen quenching, photonic conditions can
be evaluated. Moreover, since the choice of the monomer can be done in a wide range of composition, such
nanopatterned polymers surfaces present many interests in the field of optical sensors, photonic crystals, optics, biology...
The alert did not successfully save. Please try again later.
Olivier Soppera, Safi Jradi, Carole Ecoffet, Daniel J. Lougnot, "Optical near-field patterning of photopolymer," Proc. SPIE 6647, Nanocoatings, 66470I (17 September 2007); https://doi.org/10.1117/12.732416