You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 November 2007Defect reduction progress in step and flash imprint lithography
Imprint lithography has been shown to be an effective method for the replication of nanometer-scale
structures from a template mold. Step and Flash Imprint Lithography (S-FIL®) is unique in its ability to address both
resolution and alignment. Recently overlay across a 200 mm wafer of less than 20nm, 3σ has been demonstrated.
Current S-FIL resolution and alignment performance motivates the consideration of nano-imprint lithography as Next
Generation Lithography (NGL) solution for IC production. During the S-FIL process, a transferable image, an imprint,
is produced by mechanically molding a liquid UV-curable resist on a wafer. The novelty of this process immediately
raises questions about the overall defectivity level of S-FIL. Acceptance of imprint lithography for CMOS
manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective
device production. This report specifically focuses on this challenge and presents the current status of defect
reduction in S-FIL technology and will summarize the result of defect inspections of wafers patterned using S-FIL.
Wafer inspections were performed with a KLA Tencor- 2132 (KT-2132) automated patterned wafer inspection tool.
Recent results show wafer defectivity to be less 5 cm-2. Mask fabrication and inspection techniques used to obtain low
defect template will be described. The templates used to imprint wafers for this study were designed specifically to
facilitate automated defect inspection and were made by employing CMOS industry standard materials and exposure
tools. A KT-576 tool was used for template defect inspection.
The alert did not successfully save. Please try again later.
K. Selenidis, J. Maltabes, I. McMackin, J. Perez, W. Martin, D. J. Resnick, S. V. Sreenivasan, "Defect reduction progress in step and flash imprint lithography," Proc. SPIE 6730, Photomask Technology 2007, 67300F (16 November 2007); https://doi.org/10.1117/12.747565