You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 October 2007SERS beacons for multiplexed oligonucleotide detection
Gold-based surface-enhanced Raman scattering (SERS) beacons have been developed, which represent a
simple, biocompatible and rapid means of performing multiplexed DNA sequence detection in a non-arrayed format.
These SERS beacons consist of a simple stem-loop oligonucleotide probe in its native form with one end attached to
a SERS active dye molecule and the other to a gold nanoparticle, approximately 50 nm in diameter. The probe
sequence is designed to achieve a stem-loop structure, with the loop portion complementary to the target sequence,
similar to fluorescent molecular beacons. In the absence of the target DNA sequence, the SERS signal of the
associated dye molecule is detected, representing the "ON" state of the probe. When the target sequence is
hybridized to the probe, which results in an open conformation, its respective reporter dye is separated from the gold
nanoparticle, producing diminished SERS signal. In this paper, the fabrication and characterization of these SERS
beacons is described. We also demonstrate selective hybridization of a target sequence to one beacon in a mixture,
revealing their potential for use in a multiplexed fashion.
The alert did not successfully save. Please try again later.
Jian Sun, Brian M. Cullum, "SERS beacons for multiplexed oligonucleotide detection," Proc. SPIE 6759, Smart Biomedical and Physiological Sensor Technology V, 67590F (4 October 2007); https://doi.org/10.1117/12.730450