15 November 2007 Improved clustering algorithm for image segmentation based on CSA
Author Affiliations +
Proceedings Volume 6786, MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition; 67863S (2007) https://doi.org/10.1117/12.750466
Event: International Symposium on Multispectral Image Processing and Pattern Recognition, 2007, Wuhan, China
Abstract
Image segmentation is the prerequisite step for further image analysis. Segmentation algorithms based on clustering attract more and more attentions. In this paper, an image-domain based clustering method for segmentation, called CSA-CA, is proposed. In this method, a scale parameter is introduced instead of an apriori known number of clusters. Considering that adjacent pixels are generally not independent of each other, the spatial local context is took account into our method. A spatial information term is added so that the near pixels have higher probability to merge into one cluster. Additionally, a clonal selection clustering operator is used so that a cluster is capable of exploring the others that are not neighboring in spatial but similar in feature. In the experiments we show the effectiveness of the proposed method and compare it to other segmentation algorithms.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Xiaohua Zhang, Xiaohua Zhang, Pu Yang, Pu Yang, Licheng Jiao, Licheng Jiao, Xiaojin Hou, Xiaojin Hou, } "Improved clustering algorithm for image segmentation based on CSA", Proc. SPIE 6786, MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition, 67863S (15 November 2007); doi: 10.1117/12.750466; https://doi.org/10.1117/12.750466
PROCEEDINGS
7 PAGES


SHARE
Back to Top