You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 May 2008New alignment marks for improved measurement maturity
With shrinking dimensions in the semiconductor industry the lithographic demands are exceeding the parameters of the
standard optical lithography. Electron beam direct write (EBDW) presents a good solution to overcome these limits and
to successfully use this technology in R&D as well as in prototyping and some niche applications. For the industrial
application of EBDW an alignment strategy adapted to the industrial standards is required to be compatible with optical
lithography. In this context the crucial factor is the overlay performance, i.e. the maturity of the alignment strategy under
different process conditions. New alignment marks improve the alignment repeatability and increase the window of the
signal-to-noise ratio towards smaller or noisier signals. Particularly the latter has proved to be a major contribution to a
higher maturity of the alignment. A comparison between the double cross and the new Barker mark type is presented in
this paper. Furthermore, the mark reading repeatability and the final overlay results achieved are discussed.
The alert did not successfully save. Please try again later.
U. Weidenmueller, H. Alves, B. Schnabel, B. Icard, L. Pain, J.-C. Le Denmat, S. Manakli, J. Pradelles, "New alignment marks for improved measurement maturity," Proc. SPIE 6792, 24th European Mask and Lithography Conference, 679211 (2 May 2008); https://doi.org/10.1117/12.798788