28 January 2008 Behavior subtraction
Author Affiliations +
Proceedings Volume 6822, Visual Communications and Image Processing 2008; 68220B (2008); doi: 10.1117/12.770757
Event: Electronic Imaging, 2008, San Jose, California, United States
Abstract
Network video cameras, invented in the last decade or so, permit today pervasive, wide-area visual surveillance. However, due to the vast amounts of visual data that such cameras produce human-operator monitoring is not possible and automatic algorithms are needed. One monitoring task of particular interest is the detection of suspicious behavior, i.e., identification of individuals or objects whose behavior differs from behavior usually observed. Many methods based on object path analysis have been developed to date (motion detection followed by tracking and inferencing) but they are sensitive to motion detection and tracking errors and are also computationally complex. We propose a new surveillance method capable of abnormal behavior detection without explicit estimation of object paths. Our method is based on a simple model of video dynamics. We propose one practical implementation of this general model via temporal aggregation of motion detection labels. Our method requires little processing power and memory, is robust to motion segmentation errors, and general enough to monitor humans, cars or any other moving objects in uncluttered as well as highly-cluttered scenes. Furthermore, on account of its simplicity, our method can provide performance guarantees. It is also robust in harsh environments (jittery cameras, rain/snow/fog).
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Pierre-Marc Jodoin, Venkatesh Saligrama, Janusz Konrad, "Behavior subtraction", Proc. SPIE 6822, Visual Communications and Image Processing 2008, 68220B (28 January 2008); doi: 10.1117/12.770757; https://doi.org/10.1117/12.770757
PROCEEDINGS
12 PAGES


SHARE
KEYWORDS
Video

Video surveillance

Cameras

Motion detection

Motion models

Detection and tracking algorithms

Surveillance

Back to Top