20 November 2007 Small molecules with ambipolar transporting properties for efficient OLEDs
Author Affiliations +
Abstract
For stable and efficienct organic light-emitting diodes, it is essential to find molecules with high photoluminescent efficiency, little self-quenching and balanced charge transporting properties. Recently, we've designed and synthesized some highly emissive naphtho[2,3-c][1,2,5]thiadiazole (NTD) derivatives and naphtho[2,3-c][1,2,5]selenadiazole (NSeD) derivatives with unusual ambipolar transporting properties. The ambipolar transporting properties of the NTDs were explained by Marcus theory with carrier reorganization energies and charge-transfer integrals. We obtained high quality single crystals of 4,9-di(biphenyl-4-yl)-naphtho[2,3-c][1,2,5]thiadiazole (NTD02) and 4,9-bis(4-(2,2-diphenylvinyl)phenyl)-naphtho[2,3-c][1,2,5]thiadiazole (NTD05). They have disordered NTD rings' orientation with the opposite directions in the center of the molecule because of NTD's planar configuration and the single-bond connection with the phenyl substituents. The packing structure of NTD02 shows the planar arrangement of NTD rings, forming a "charge transporting channel". Quantum calculation also confirms that the π-π stacking interaction in NTD derivatives benefits the charge transporting via intermolecular hopping on NTD rings. The hole and electron mobilities of NTD05 are 7.16×10-4 cm2/V·s and 6.19×10-4 cm2/V•s at an electronic field E = 2.0×105 V/cm, respectively. The hole mobility of NTD05 is close to that of N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'-diamine (NPB) and the electron mobility of NTD05 is two orders-of-magnitude higher than that of tris(8-hydroxyquinoline) aluminum (Alq3). For the NTD derivatives, NTD05 also shows the best performance in non-doped OLEDs. CIE coordinates of (0.65, 0.35) and a peak efficiency of 2.4% are achieved for a double layer OLED with NPB as the hole transporting layer and NTD05 as the emitting layer. Moreover, we get ultimate red emission with CIE coordinates of (0.71, 0.29) for some of the NSeD based non-doped OLEDs.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lian Duan, Lian Duan, Peng Wei, Peng Wei, Yong Qiu, Yong Qiu, } "Small molecules with ambipolar transporting properties for efficient OLEDs", Proc. SPIE 6828, Light-Emitting Diode Materials and Devices II, 682805 (20 November 2007); doi: 10.1117/12.765019; https://doi.org/10.1117/12.765019
PROCEEDINGS
11 PAGES


SHARE
Back to Top