Translator Disclaimer
17 March 2008 Optimization of the heat transfer in multi-kW-fiber-lasers
Author Affiliations +
An analytical approach for the thermal design of high-power-fiber laser components is presented. The modular structure of the model allows adaption to different fiber designs and gives insight into the governing parameters of the heat transport. Furthermore the analysis and analytic optimization of interacting effects of groups of layers is possible with this method and is presented in this work. A previously suggested cooling scheme for a heat load of 120 W/m is analyzed. Applying the analysis to air-clad-fibers is leading to results differing up 40 % from previous works. The FEM-analysis of the cooling of splices shows that the cooling scheme suggested for the active fiber is not sufficient for splices for a fiber resonator in the kW-range. Using a one-dimensional model it can be shown that if a small percentage of loss in the splice is absorbed inside the recoat, it is necessary to reduce the recoat thickness.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
B. Zintzen, T. Langer, J. Geiger, D. Hoffmann, and P. Loosen "Optimization of the heat transfer in multi-kW-fiber-lasers", Proc. SPIE 6873, Fiber Lasers V: Technology, Systems, and Applications, 687319 (17 March 2008); doi: 10.1117/12.764450;


Light amplification by a Cd3P2 cylinder fiber
Proceedings of SPIE (February 01 2001)
All fiber approach to solid-state laser cooling
Proceedings of SPIE (February 08 2012)
High Power Transmission Through Fiber Optics
Proceedings of SPIE (March 31 1973)
Fluoride glass fiber for reliable Er YAG and Er,Cr YSGG...
Proceedings of SPIE (February 06 2008)

Back to Top