You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 March 2008A novel ultrasonic method for measuring breast density and breast cancer risk
Women with high mammographic breast density are at 4- to 6-fold increased risk of developing breast cancer compared
to women with fatty breasts. However, current breast density estimations rely on mammography, which cannot provide
accurate volumetric breast representation. Therefore, we explored two techniques of breast density evaluation via
ultrasound tomography. A sample of 93 patients was imaged with our clinical prototype; each dataset contained 45-75
tomograms ranging from near the chest wall through the nipple. Whole breast acoustic velocity was determined by
creating image stacks and evaluating the sound speed frequency distribution. Ultrasound percent density (USPD) was
determined by segmenting high sound speed areas from each tomogram using k-means clustering, integrating over the
entire breast, and dividing by total breast area. Both techniques were independently evaluated using two mammographic
density measures: (1) qualitative, determined by a radiologist's visual assessment using BI-RADS Categories, and (2)
quantitative, via semi-automatic segmentation to calculate mammographic percent density (MPD) for craniocaudal and
medio-lateral oblique mammograms. ~140 m/s difference in acoustic velocity was observed between fatty and dense BI-RADS
Categories. Increased sound speed was found with increased BI-RADS Category and quantitative MPD.
Furthermore, strong positive associations between USPD, BI-RADS Category, and calculated MPD were observed.
These results confirm that utilizing sound speed, both for whole-breast evaluation and segmenting locally, can be
implemented to evaluate breast density.
The alert did not successfully save. Please try again later.
Carri K. Glide-Hurst, Neb Duric, Peter J. Littrup, "A novel ultrasonic method for measuring breast density and breast cancer risk," Proc. SPIE 6920, Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, 69200Q (13 March 2008); https://doi.org/10.1117/12.772365