You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 March 2008Development of partially fluorinated EUV-resist polymers for LER and sensitivity improvement
In order to improve EUVL resist characteristics, especially sensitivity, we have investigated two types of partially
fluorinated resist polymers. The one was side chain fluorinated PHS type resist polymers. The other was main chain
fluorinated resist polymers. Poly (p-hydroxystyrene) (PHS) type polymers with trifluorostyrene (TFSt) were synthesized
and characterized their sensitivity behavior. From this evaluation, we found that PHS contained TFSt unit had a high
sensitivity, keeping their etching durability. We expect that TFSt unit can work to enhance the resist sensitivity in PHS
based EUVL resist polymers. Main chain fluorinated polymers based FIT unit (FITMAd and FITAdOM) were
synthesized. FITMAd and FITAdOM showed high sensitivity compared to non fluorinated reference sample. From
molecular weight measurement, we infer that the polymer main chain of FITMAd can be decomposed by irradiating with
EUV light. The outgassing of FITMAd and FITAdoM were measured. There is no big difference between the total
outgassing of FIT polymers and that of non fluorinated acrylic sample. And small amount of Hydrogen fluoride (HF)
were detected. We infer that FITMAd and FITAdOM are decomposed then HF is generated under EUV exposure. From
these results, we expect that FIT unit can work to enhance the resist sensitivity and can act main chain decomposed resist
unit in EUVL resist polymers.
The alert did not successfully save. Please try again later.
Takashi Sasaki, Osamu Yokokoji, Takeo Watanabe, Hiroo Kinoshita, "Development of partially fluorinated EUV-resist polymers for LER and sensitivity improvement," Proc. SPIE 6923, Advances in Resist Materials and Processing Technology XXV, 692347 (26 March 2008); https://doi.org/10.1117/12.772542