Translator Disclaimer
16 April 2008 From the laboratory to the soldier: providing tactical behaviors for Army robots
Author Affiliations +
The Army Future Combat System (FCS) Operational Requirement Document has identified a number of advanced robot tactical behavior requirements to enable the Future Brigade Combat Team (FBCT). The FBCT advanced tactical behaviors include Sentinel Behavior, Obstacle Avoidance Behavior, and Scaled Levels of Human-Machine control Behavior. The U.S. Army Training and Doctrine Command, (TRADOC) Maneuver Support Center (MANSCEN) has also documented a number of robotic behavior requirements for the Army non FCS forces such as the Infantry Brigade Combat Team (IBCT), Stryker Brigade Combat Team (SBCT), and Heavy Brigade Combat Team (HBCT). The general categories of useful robot tactical behaviors include Ground/Air Mobility behaviors, Tactical Mission behaviors, Manned-Unmanned Teaming behaviors, and Soldier-Robot Interface behaviors. Many DoD research and development centers are achieving the necessary components necessary for artificial tactical behaviors for ground and air robots to include the Army Research Laboratory (ARL), U.S. Army Research, Development and Engineering Command (RDECOM), Space and Naval Warfare (SPAWAR) Systems Center, US Army Tank-Automotive Research, Development and Engineering Center (TARDEC) and non DoD labs such as Department of Energy (DOL). With the support of the Joint Ground Robotics Enterprise (JGRE) through DoD and non DoD labs the Army Maneuver Support Center has recently concluded successful field trails of ground and air robots with specialized tactical behaviors and sensors to enable semi autonomous detection, reporting, and marking of explosive hazards to include Improvised Explosive Devices (IED) and landmines. A specific goal of this effort was to assess how collaborative behaviors for multiple unmanned air and ground vehicles can reduce risks to Soldiers and increase efficiency for on and off route explosive hazard detection, reporting, and marking. This paper discusses experimental results achieved with a robotic countermine system that utilizes autonomous behaviors and a mixed-initiative control scheme to address the challenges of detecting and marking buried landmines. Emerging requirements for robotic countermine operations are outlined as are the technologies developed under this effort to address them. A first experiment shows that the resulting system was able to find and mark landmines with a very low level of human involvement. In addition, the data indicates that the robotic system is able to decrease the time to find mines and increase the detection accuracy and reliability. Finally, the paper presents current efforts to incorporate new countermine sensors and port the resulting behaviors to two fielded military systems for rigorous assessing.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David G. Knichel and David J. Bruemmer "From the laboratory to the soldier: providing tactical behaviors for Army robots", Proc. SPIE 6962, Unmanned Systems Technology X, 69621M (16 April 2008);


Probabilistic methods for robotic landmine search
Proceedings of SPIE (March 02 2001)
Semi autonomous mine detection system
Proceedings of SPIE (April 29 2010)
Remote robotic countermine systems
Proceedings of SPIE (April 29 2010)
Lemmings: a family of scalable portable robots
Proceedings of SPIE (July 22 1999)

Back to Top