You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 April 2008Empirical performance of the spectral independent morphological adaptive classifier
Effective missile warning and countermeasures continue to be an unfulfilled goal for the Air Force including the wider military and civilian aerospace community. To make the necessary detection and jamming timeframes dictated by today's proliferated missiles and near-term upgraded threats, sensors with required sensitivity, field of regard, and spatial resolution are being pursued in conjunction with advanced processing techniques allowing for detection and discrimination beyond 10 km. The greatest driver of any missile warning system is detection and correct declaration, in which all targets need to be detected with a high confidence and with very few false alarms. Generally, imaging sensors are limited in their detection capability by the presence of heavy background clutter, sun glints, and inherent sensor noise. Many threat environments include false alarm sources like burning fuels, flares, exploding ordinance, and industrial emitters. Spectral discrimination has been shown to be one of the most effective methods of improving the performance of typical missile warning sensors, particularly for heavy clutter situations. Its utility has been demonstrated in the field and on-board multiple aircraft. Utilization of the background and clutter spectral content, coupled with additional spatial and temporal filtering techniques, have yielded robust adaptive real-time algorithms to increase signal-to-clutter ratios against point targets, and thereby to increase detection range. The algorithm outlined is the result of continued work with reported results against visible missile tactical data. The results are summarized and compared in terms of computational cost expected to be implemented on a real-time field-programmable gate array (FPGA) processor.
The alert did not successfully save. Please try again later.
Joel B. Montgomery, Christine T. Montgomery, Richard B. Sanderson, John F. McCalmont, "Empirical performance of the spectral independent morphological adaptive classifier," Proc. SPIE 6968, Signal Processing, Sensor Fusion, and Target Recognition XVII, 69681M (17 April 2008); https://doi.org/10.1117/12.778704