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ABSTRACT 

The common approach in digital imaging today is to capture as many pixels as possible and later to 
compress the captured image by digital means. The recently introduced theory of compressed sensing 
provides the mathematical foundation necessary to change the order of these operations, that is, to 
compress the information before it is captured. In this paper we present an optical implementation of 
compressed sensing. With this method, a compressed version of an object’s image is captured directly. The 
compression is accomplished by optical means with a single exposure. One implication of this imaging 
approach is that the effective space-bandwidth-product of the imaging system is larger than that of 
conventional imaging systems. This implies, for example, that more object pixels may be reconstructed and 
visualized than the number of pixels of the image sensor. 

Keywords: compressive imaging, compressive sensing, compressed sensing, aperture coding, matching 
pursuit, resolution, stagewise orthogonal matching pursuit. 

1. INTRODUCTION 
Common digital imaging systems follow the sample-then-compressed framework. According to this 
framework the imaging system first captures as many pixels as possible. As a result, the captured image is 
highly redundant. Therefore, the second common step after acquisition is digital compression. The 
compression is required for storage and communication purposes. Compression techniques exploit the 
visual redundancy typical to human intelligible images to represent the captured image by less numbers 
than the number of pixel captured. This way of imaging evokes the question: is it strictly necessary to 
acquire all the image samples in a pedantic way and then compress them later? Can one capture optically 
capture fewer samples without compromising the quality of the reconstructed image? The answer to this 
question is positive owing to the recent theory of compressed (or compressive) sensing (CS) theory.1-5 The 
basic idea behind CS is that an image can be accurately reconstructed from fewer measurements than the 
nominal number of pixels if it is compressible by a known transform such as Wavelet or Fourier transform.  

The CS theory provides the mathematical background necessary for designing compressive imaging (CI) 
systems. There are imaging application in which compressing the image before capturing it is beneficial. 
Some examples of such systems are those in which the acquisition is expensive in terms of hardware (high 
pixel cost) or acquisition time, or systems that cannot afford digital compression before storage of 
transmission of the data.  The price that is to be paid for implementation of a CS-based imaging system is 
giving up the convenient structural form of common linear-shift invariant imaging schemes. This implies 
abandoning conventional imaging design architectures.  

Recently, several CI systems were proposed5-8. One practical way to implement CS is by capturing random 
projections of the object and then to apply an appropriate numerical reconstruction algorithm to reconstruct 
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the visual image. In Ref. 6 a compressed imaging (CI) system is proposed that uses a digital mirror array 
device to randomly project the image on a single sensor. Successive random exposures are taken by 
randomly changing the digital mirror array. In Ref. 7 we presented what is, to the best of our knowledge, 
the first proposed single shot, motion-free CI technique. With this technique the random projection is 
accomplished by using a randomly coded aperture. In Ref. 8 the CS theory was used for compressed 
spectral imaging. In Ref. 9 CI is implemented by using a linear sensor scanning the field-of-view by 
rotational motion. The projections are not random; therefore the compression is less effective. However the 
imaging architecture is almost similar to conventional ones. In this paper we overview the technique 
presented in Ref. 7. We further elaborate the technique in Ref. 7 and present new results using a different 
reconstruction algorithm. 

This paper is organized as follows. In section 2 we review the basic concepts behind CS. In Sec. 3 we 
describe the compressed imaging system proposed in Ref. 7. In Sec. 4 we present reconstructions from 
simulated compressed images obtained with this compressed imaging system and using a reconstruction 
technique described in the appendix. Finally, we conclude in section 5, summarizing the main results and 
discussing future work.   

2. COMPRESSIVE IMAGING BY RANDOM PROJECTIONS 
A block diagram for CS with random projections is shown in Fig. 1. The object f consisting of N pixels is 
imaged by taking a set, g,  of M random projections. We are interested in the case that M<N, meaning that 
the captured image is undersampled in conventional sense. In our discussion we represent two dimensional 
object f and captured image g in a lexicographic order, that is, in the form of column vectors of sizes N and 
M, respectively. We assume that f has a sparse representation in some known domain so that it can be 
composed by a transform Ψ and only K nonzero coefficients of a vector α, that is f = Ψα where only K 
(K<<N) entries of α are nonzero. We will refer to such an object as K-sparse object. Many natural images 
are assumed to be sparse or nearly sparse in some domain. For instance, it is commonly assumed for the 
purpose of image compression that images are nearly sparse in Fourier or some wavelet domain so that (N-
K) coefficients are set to be zero. In the measuring step we take M orthogonal random projections Φ of f. 
Since M<N  we get M compressed sensing measurements g=ΦΨα.1-3 Practically, M has to be at least three 
times larger than K; 3M K≥ .3 The compression operator Ψ has to be incoherent with the measurement 
operator Φ, that is, their bases are essentially uncorrelated.1,2 Fortunately, incoherence property holds for 
many pair of bases. In particular, it holds with high probability for any arbitrary basis of Ψ and the random 
projections Φ. For random Gaussian measurements, that is for Φ having zero mean identically independent 
distributed vectors, there are only ( ) NKNcKM <<≥ /log  required measurements, with c a small 
constant, to fully recover the N-length original image f. For practical cases with which f is not strictly 
sparse and Φ not necessarily zero-mean Gaussian random projector, M has to be at least three times larger 
than K; 3M K≥ .3 

  

 
Fig. 1. Imaging scheme of compressed sensing. 
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In order to reconstruct f we first estimate the coefficients α by solving the following minimizations 
problem: 

 ˆ min || ' ||p p
α

α α= subject to ΩαΦΨαg == , (1) 

where ΦΨΩ ≡ and || . ||p denotes the lp norm defined by 
1 /
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∑ . Solving (1) we find 

ˆ pα by choosing from all coefficient vectors α’ that are related to the measured image by g = ΦΨα' , the 
one with the minimum p-norm. Sparse solutions for α may be found for p between 0 and 1.  With p=0, the 
l0 norm operator 0|| ' ||α  simply counts the number of nonzero entries of α’. In such a case, the 

reconstruction condition (1) seeks the coefficient vector α̂o that has the minimum number of nonzero 

elements such that its corresponding object ˆ ˆf Ψαo o= , after passing through the imaging operator Φ (Fig. 
1), yields the measurement g. In principle, only M=K+1 measurements are required to recover the K-sparse 
signal f with high probability. It can be shown1,2,10 that the l0 solution of Prob. (1) yields the sparsest α is f 
is sufficiently sparse, such that  
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where { }µ Ω is the mutual-coherence defined as the larger absolute normalized inner product between 
different columns of  a matrix  Ω: 
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Unfortunately, the implementation of the l0 estimator is unstable and it additionally requires combinatorial 
enumeration of the N

K
⎛ ⎞
⎜ ⎟
⎝ ⎠

 possible sparse subspaces, which is prohibitively complex. A more practically 

approach is estimating f by solving Eq. (1) with p=1 for which traditional linear programming techniques 
are available,1-4 such as the Basis Pursuit (BP) algorithm.1 With condition (2) fulfilled the, linear 
programming methods for l1 solution of (1) converge to the desired l0 solution, that is 1ˆ ˆ o=α α .1,5,10 Finally, 

once we find 0α̂ , the object is reconstructed simply by 0 0
ˆ α̂=f Ψ . 

Another approach for l1 solution of (1) is via the MP (Matching Pursuit) algorithms, a family of fast greedy 
algorithms, which were “rediscovered” recently. The new results for MP are comparable with recent results 
for the Basis Pursuit (BP). The MP algorithms are faster and easier to implement, which makes them an 
attractive alternative to BP for signal recovery problems. 11 

3. COMPRESSIVE IMAGING USING RANDOM CODED APERTURE  
The random projection operator Φ in Fig.1 can be implemented by employing random aperture coding. 
Aperture coding was previously used for improving the signal-to-noise ratio, controlling the depth of field 
and for optical encryption. In Ref. 7 we used aperture coding for accomplishing optical compression. One 
possible optical setup using such a coded aperture is depicted in Fig. 2. The object is placed at a distance of 
zo from the lens. Attached to the lens is a random Gaussian phase screen that randomly encodes the 
aperture. The scattered light from the random phase screen is collected by a lens with diameter D and focal 
length fl. The scattered light reaches an array of CCD detectors, which is located at a distance zi behind the 
lens. In Ref. 7 it is shown that if the correlation length, ρ, of the random phase is sufficiently small with 
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respect to the other dimensions of the imaging system then the imaging operator Φ performs the required 
random projections. Consequently, Φ and Ψ are incoherent with overwhelming probability1, as required for 
CS solution via Eq. 1. It is noted that the compressed image obtained with this system is captured in a 
single shot. The system is static and no moving or scanning elements are used. 

ρ

 
 

Fig. 2.  Single shot compressed imaging scheme. Phase mask with correlation length ρ is attached to a lens 
with diameter D. 

  

4. SIMULATION RESULTS 
We have simulated, using Matlab, images obtained with the CI system shown in Fig. 2. The simulation is 
carried out by propagating the two-dimensional fields from the object to the image plane according to 
Fresnel theory. In our simulations we assume that the CCD pixel size is 7.4µm, central wavelength is 
λ = 0.55 µm, and zo=zi=fl=140mm. The random phase mask is assumed to be a random Gaussian phase 
mask with correlation length of ρ=5.5µm. The lens diameter is D=50mm. These simulation conditions 
match the random projection requirements listed in the appendix of Ref. 7.  

We assume that the object pixel size is 1 mm. Due to computer resources constrains, we limit the object 
size to be 64x64 pixels. With this object size, the Φ and Ψ matrices are of the order of 4096×4096 
elements. Each row in Φ represents a shift variant point spread function of size 4096(=64x64).  

In ref. 7 the Matching Pursuit algorithmi was used for estimating α in Fig. 1. Here we use an improved 
version of this algorithm that was recently introduced; the StOMP (Stagewise Orthogonal Matching 
Pursuit) algorithm.12 StOMP was specially tailored for random operators Ω, therefore their straight is for 
solving CS data.  In a nutshell, the StOMP algorithm solves the sparse solution problem by calculating a 
residual from the stage before, backprojects it and determines the dominant entries by thresholding with 
respect to permitted error. In contrast to the previously developed OMP (Orthogonal Matching Pursuit) 
algorithm, multiple thresholded entries are permitted. Those entries define indexes of the estimated most 
significant sparse coefficients.  These indexes, together with those estimated in the previous iteration, are 
used to select a set of columns of Ω that are then used to backproject g to obtain the estimated coefficients 

( )ˆ sα  of iteration steps. The StOMP algorithm is described in more details in the Appendix. In our 
simulations we used a StOMP implementation based on the SparseLab package.14 

Figures 3-5 show examples of reconstructed images from simulated compressed images obtained with the 
above described system. Simulation results of the compressed image and reconstructed image of the “CI” 
letters shown in Fig. 3(a). The original image in Fig. 3(a) has 64x64 pixels, whereas the captured image in 
Fig. 3(b) has only 40x40 pixels. It can be seen that due to the random projections, the captured image 
shown in Fig. 3(b) has absolute no visual meaning. The reconstructed image using the StOMP algorithm is 
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shown in Fig. 3(c). Note that despite that the captured image in Fig. 3 (b) is represented by only 1550 
samples, which are only 36.7% of the original image, perfect reconstruction is obtained.  The 
reconstruction error is MSE≈10-6.  

 
Fig. 3.  Simulation of CI images. (a) Original  image (64x64pixels); (b) Captured  image (40X40pixels); (c) 

Reconstructed image (64x64pixels). 

For the reconstruction of Fig. 3(b) we have used the Haar-wavelet transform as our basis for the sparse 
image representation Ψ. The Haar-wavelet transform, decomposes the image in Fig. 3(a) to a vector α that 
has only about 880 non-zeroes, so that only approximately 20% of the coefficients are non-zeros (K/N ≅ 
20%).   
The simulation took 2419 seconds to calculate the system's PSF, and 199 seconds to solve the StOMP 
algorithm on a PC computer with AMD Athlon 64 dual core processor, 3800+, 2GB of RAM, working 
with Windows XP operating system. In our simulations we found StOMP to be by far the fastest algorithm 
to solve the SSP, compared to Basis Pursuit (implemented as in the l1-magic package14) and greedy 
Matching Pursuit algorithm (implemented in Ref. 7).  

 
Figure 4 (a) shows an image of a knife. Figure 4(b) shows the compressed captured image and Fig. 4 (c) 
shows reconstructed image using the StOMP algorithm. Here again we used Haar-wavelet transforms for Ψ 
because of the piecewise constant nature of the image. Note that despite the captured image in Fig. 4 (b) 
being represented by 50% less pixels than the original image, we obtained perfect reconstruction in Fig. 
4(c). It can be seen that the complete field of view and full resolution is reconstructed, implying that the 
entire object space-bandwidth is preserved. The reconstruction error is MSE≈10-7. This negligible MSE is 
owing to the fact that the Haar-wavelet transform used as Ψ decomposes the original image to a coefficient 
vector α that has only K=1031 non-zeroes, that is K/N ≅ 25%. 
 

(a) 

 

 

 
 

 

 (c) 
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Fig. 4. Simulation for “knife” image. (a) Original image (64x64 pixles). (b) Captured image (45x46 pixels). 

(c) Reconstructed image (64x64 pixels).  

 

Figure 5 shows results of compressed sensing of complex object image. Figures 5(b) to 5(f) present 
reconstructed images from compressed image of sizes 2500, 2500, 3000, 35000 and 3800 pixels, which are 
48.9%, 61.1%, 73.4%, 85.6%  and 92.7% of the nominal (64x64=4096 pixels), respectively. Unlike Figs. 
3(a) and 4(a), the gun image is not piecewise constant, and therefore it cannot be compressed efficiently by 
Haar-wavelet transform. For the reconstructions in Fig. 5 we used the CDF (Cohen-Daubechies-Feaveau) 
9/7 wavelet,16 which we found empirically to be the best among several wavelet transforms Ψ we 
considered. CDF 9/7 wavelet is well known for its popularity in the JPEG2000 standard. We see that 
reconstruction from compressed images having 48.9%, 61.1%, 73.4%, less samples than nominal [Figs. 
5(b)-(c)] appear blurred and noisy. Images reconstructed from less compressed images, having only 26.6%, 
14.4% and 7.3% less samples than nominal [Figs. 5(c)-(d)], are much sharper.  The noisy appearance is 
explained by the fact that unlike the “knife” image (Fig. 4), in which many of its wavelet coefficients are 
zero, less coefficients of Fig. 5(a) are absolute zero. Many other coefficients have a small value (after the 
transform), and are being discarded by the StOMP false detection rate thresholding, creating the "noisy" 
look of the image.  
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Fig. 5. “Machine gun” image, sampled at different size of detector array, using CDF9/7 asΨ . (a) original 
(4096 pixels), (b) Reconstruction using 2000 samples, (c) 2500 samples, (d) 3000 samples, (e) 3500 
samples, (f) 3800 samples. 

When comparing the above obtained results with typical results obtained with digital compression, one 
needs to keep in mind that the reference images used here are much smaller than those generally considered 
in digital compression examples (64x4 pixels here versus  256x256 or 512x512 pixels in digital 
compression). Therefore, the typical images considered in digital compression examples are much more 
redundant and much more compressible. Consequently, larger compression rates can be obtained for given 
reconstruction quality. For original images of size 64x64 pixels, as considered in Figs. 3-5, the percentage 
of compression coefficients (K/N) required for a given reconstruction quality is much  larger than for 
cameramen images, having at least 256x256 pixels as considered in digital compression examples. In other 
words, there is much less redundancy in figures having 64x64 pixels than in typical images that are much 
larger. Therefore it is expected that for common images, much larger than those demonstrated here, much 
larger optical compression can be achieved. 

  

5. SUMMARY AND DISCUSSION 
In this work we presented a method for compressive imaging using aperture coding. We overviewed and 
further elaborated the CI approach recently introduced in Ref. 7. The CI system randomly projects the 
object field in the image plane with the help of random phase mask. The random phase mask can be viewed 
as a random scrambler of rays. The compressed image is captured with a single exposure without using 
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moving elements. Here we presented more accurate simulations of the captured images than in Ref. 7. We 
also used a more advanced restoration algorithm. Simulations have shown that for synthetic images, exact 
reconstructions can be obtained from compressed images that have approximately 65% less pixels than the 
original image. In other words, we obtained optical compression of ~35% with absolute no loss of 
resolution or field of view. For non synthetic images more samples are required; images having 
approximately 85% of nominal samples yield satisfactory reconstructions.  

It is important to point out that due to computational limitations our results were obtained for small object 
images, having 64x64 pixels. For larger images we expect better optical compression ratios. The reason is 
as follows. Empirical studies show that in order to have good reconstructions with CS algorithms3 the 
number of captured samples need to be three to five times the number of nonzero coefficients, i.e., 
M=3K÷5K. On the other hand we know from digital compression practice that for regular size images 
compression rates of 15-25 yield satisfactory reconstructions; that is K/N ≈ 4%÷6.7%. Putting these two 
facts together infer that compressed optical imaging with compression ratios approximately 15-30% can be 
expected. However such compression ratio can only be expected for regular sized images. In this work we 
have obtained poorer optical compression ratios because we used small objects that have much larger K/N 
ratios and because CS generally works less effectively with a relatively small number of captured samples 
M.  

The compressed imaging technique discussed in this work may be further improved by optimizing the 
imaging setup and the reconstruction technique. The optical setup shown in Fig. 1 may be further optimized 
considering different layouts than in Fig. 2. Depending on the type of the sparsity of the object, the 
reconstruction may be optimized by post processing and by multi-scale compressed sensing.2,3 The 
reconstruction algorithm may be accelerated by employing the structure of Ψ,4 which is beneficial if very 
large images are considered.  

As a final note, we believe that the concept presented in this paper may be extended effectively for three-
dimensional imaging because three-dimensional images are highly compressible.17,18 

 

 

6. APPENDIX A- DESCRIPTION OF THE STOMP ALGORITHM12 

StOMP operates in S stages, building up a sequence of approximations 0 1, , ...α α . by removing detected 

structure from a sequence of residual vectors 0 1, , ...r r   Figure 6 gives a diagrammatic representation.  
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Fig.6  Block diagram of StOMP algorithm (after Ref. 10) 

 
StOMP starts with initial ‘solution’ 0 0α = and initial residual 0r g= . The stage counter, s, starts at s = 1. 

The algorithm also maintains a sequence of estimates 0 , ..., sI I of the locations of the non zeros in 0α . The 
s-th stage applies matched filtering to the current residual, getting a vector of residual correlations 
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T

s sc r −= Ω      
      (4) 

which is assumed that conatins a small number of significant non zeroes in a vector disturbed by Gaussian 
noise in each entry. The procedure next performs hard thresholding to find the significant non zeroes; the 
thresholds, are specially chosen based on the assumption of Gaussianity. Thresholding yields a small set 

sJ of “large” coordinates: 

{ : ( ) }s s s sJ j c j t σ= >       (5) 
where sσ  is a formal noise level and st  is a threshold parameter. We merge the subset of newly selected 
coordinates with the previous support estimate, thereby updating the estimate: 

1s s sI I J−= U            (6) 
We then project the vector y on the columns of Ω  belonging to the enlarged support. Letting IΩ  denote 

the nx I  matrix with columns chosen using index set I, we have the new approximation sα supported in 

SI  with coefficients given by:  
1( ) ( )

s s s s

T T

s I I I I gα −= Ω Ω Ω       (7) 
The updated residual is 

s sr g α= − Ω         (8) 
We check a stopping condition and, if it is not yet time to stop, we set : 1s s= + and go to the next stage of 
the procedure. If it is time to stop, we set ˆ

s sα α=  as the final output of the procedure. 
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