You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 April 2008Model link and knot mapping in quantum electrodynamics
A heuristic mapping onto links and knots of Feynman diagrams in quantum electrodynamics at infinitesimal distances is investigated. This model map is formulated by treating the asymptotic photon propagator as composite electron and positron propagators, and exploiting Feynman's picture of positrons as electrons moving backward in time. The mapping is applied to the calculation in Feynman gauge of the divergent part of the inverse charge renormalization constant to sixth order in the bare charge of the electron as an illustration of Kreimer's classification of the divergent part of Feynman diagrams in terms of transcendental numbers and knots. In particular, I elucidate the mapping of a vacuum polarization graph with two crossed photo propagators onto the trefoil knot.
The alert did not successfully save. Please try again later.
Howard E. Brandt, "Model link and knot mapping in quantum electrodynamics," Proc. SPIE 6976, Quantum Information and Computation VI, 69760N (23 April 2008); https://doi.org/10.1117/12.775740